设随机变量X服从正态分布N(μ,σ^2),通过查阅正态分布表

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:06:22
设随机变量X服从正态分布N(μ,σ^2),通过查阅正态分布表
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

设随机变量X与Y相互独立且都服从正态分布N(μ,12),若P{X+Y≤1}=12,则μ等于(  )

设Z=X+Y,X、Y独立且都服从正态分布N(μ,12),Z也服从正态分布D(Z)=D(X)+D(Y)=1,E(Z)=μ+μ=2μZ~N(2μ,1)所以:Z-2μ~N(0,1)P(Z≤1)=P(Z-1≤

概率论与数理统计设随机变量X服从正态分布N(0,1),Y服从正态分布N(0,1),且X,Y相互

设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X 服从正态分布 N(μ,σ^2),y=ax+b 服从标准正态分布,则a=?,b=?

YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-

设随机变量X服从正态分布N(u1,a1^2),Y服从正态分布N(u2,a2^2),且P{IX—u1IP{IY—u2I

把正太分布化为标准正太分布就可以解决了,答案是A再问:�Ҳ���ת���������鷳���������ֱ�Ӱ���Ľ�������ͼҲ����Ŷ��ʮ�ָ�л��再答:{��x-��1��/��1}

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

设随机变量X服从正态分布N(μ,σ^2),已知P(X

P(x0)=0898f就是那个圈加一竖(ps:莫非也是seu的孩纸==)

急 设随机变量X服从正态分布N(μ,σ2),σ>0,设其分布函数F(x)的曲线的拐点坐标 一定 是________

F'(x)=1/根号(2pi)*e^[-(x-μ)^2/(2σ^2)]F''(x)=-1/根号(2pi)*e^[-(x-μ)^2/(2σ^2)]*(x-μ)/σ^2)令:F''(x)=0,得:x=μ.

随机变量X服从正态分布N(u1, ),Y服从正态分布N(u2, ),X与Y独立,则X+Y服从

(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或

请问随机变量X服从正态分布

就是满足正态分布的性质.

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+

设随机变量X服从正态分布N(0,σ^2),若P{|X|>k},试求P{X<k}

P{|X|>k}=0.1P{X<k}=1-P{|X|>k}/2=0.95

设随机变量X与Y独立,X服从正态分布N(μ,σ^2 ),Y服从[-pi,pi]上的均匀分布,求Z=X+Y的密度函数

fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)

随机变量X服从正态分布N(2,4),若P(X

由X~N(2,4),得Y=(X-2)/2~N(0,1),因此P(X