设随机变量X服从正态分布N(2,2^2),且ax b服从标准正态分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:15:55
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-
你先求出那个啥f(x、y)等于多少,然后再E(U(x、y))=∫U(x、y)f(x、y)dxdy就可以了再问:。。。你这个方法复杂了,我已经做出来了
把正太分布化为标准正太分布就可以解决了,答案是A再问:�Ҳ���ת���������鷳���������ֱ�Ӱ���Ľ�������ͼҲ����Ŷ��ʮ�ָ�л��再答:{��x-��1��/��1}
D(Y)=D(8-5X)=D(8)+25D(X)=0+25*5=125
P(x0)=0898f就是那个圈加一竖(ps:莫非也是seu的孩纸==)
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
方差为3+4=7DZ=DX+DY如果有系数系数要平方
F'(x)=1/根号(2pi)*e^[-(x-μ)^2/(2σ^2)]F''(x)=-1/根号(2pi)*e^[-(x-μ)^2/(2σ^2)]*(x-μ)/σ^2)令:F''(x)=0,得:x=μ.
N(2,5),N(5,20)E(X+Y)=EX+EY=7D(X+Y)=DX+DY=25X+Y~N(7,25)(X+Y-7)/5~N(0,1)P(X+Y
就是满足正态分布的性质.
P{|X|>k}=0.1P{X<k}=1-P{|X|>k}/2=0.95
fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)
由X~N(2,4),得Y=(X-2)/2~N(0,1),因此P(X