设随机变量X服从参数的泊松分布,且已知E[(X-2)(X-3)]=2,求值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:23:29
X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→
首先E(X-1)(X-2)=E(X^2-3X+2)=1.因为DX=EX=Y.解出来Y=1.带入到泊松分布中,因为泊松分布是从0开始到正无穷.所以P{X>=1}=1-e
P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3
其实楼上的那位过程是对的,只是给的结果是方差.Y服从二项分布Y~b(n,p),这里n=3,p=e^(-2).所以E(Y)=3*e^(-2)再问:p=e^(-2)这个怎么得出来的。。。。。再答:泊松分布
X~π(2)E(x)=2D(X)=2D(X)=E(X^2)-[E(X)]^22=E(X^2)-4E(X^2)=6
P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2
泊松分布的期望和方差均为λ(就是参数).所以E(Y)=2*E(X)-2=2E(Y)=2
由泊松分布知道E(x)=D(x=)λ,则可知E[(x-2)(X-3)]=E(x^2-5x+6)=E(x^2)-5E(x)+6=D(x)+(E(x))^2-5E(x)+6=λ+λ^2-5λ+6=2即λ^
因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\
由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1
参数为2的泊松分布,其期望就等于参数2即,E(X)=2∴ E(2X)=2E(X)=4……【期望的性质E(CX)=CE(X)】再问:
P(X=2)=[9e^(-3)]/2
泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)
E((X-1)(X-2))=E(X2)-3E(X)+2=1E(X)=∝K=0KλKK!e−λ=λE(X2)=λ2+λλ2+λ-3λ+2=1则λ=1D(X)=λ=1