设随机变量X在区间[-1,1]上服从均匀分布,随机变量Y,求协方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:44:27
(1)f(x)=1/(b-a)=1/4P{-0.5
(1)由已知,f(x)=1,(0
首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
f(x)=1/3-2
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
详细过程点下图查看
由已知,f(x)=1/2,(-1再问:x��ȡֵ��ΧΪʲô�ǣ�-1,1������[-1,1]?���y��ȡֵ��ΧΪʲô��[-1,3)����ȡ��ô��再答:��Щ����ϸ�����⣬�
1、方法一:求Y的累积分布函数Fy(y),对Fy(y)求导可得概率密度函数fy(y)已知X的累积分布函数Fx(x)=P(X
F(y)=P(Y=e^(-y/2))=1-P(x
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
U(-1,2)概率密度f(x)=1/3,2>x>-10,其他P(Y=1)=P(X>0)=∫(下限0到上限正无穷大)f(x)dx=∫(下限0到上限2)1/3dx=2/3
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
饿……上学期概率论作业题的简化版……我做的那道作业题没有告诉X是连续型的,也可以证明这两个结论,我写一下老师讲的标准方法.①a≤X≤b,求期望E有保序性,这是个定理.所以E(a)≤E(X)≤E(b),
服从正态分布,密度函数关于x=0对称.所以B再问:为什么说密度函数关于x=0对称。所以B再答:··概率的大小等于密度函数跟X轴的面积嘛,对称轴左边的总面积不就是一半嘛~
δ=x^2-4>=0解得x>2或
0.52x+(118-x)*0.33=53
设随机变量X服从参数为0.5的指数分布,用切比雪夫不等式估计P(|X-2|≥3)≤5)^2/3^2=4/P(|X-2|≥3)≤(1/0