设随机变量X和Y相互独立,Z=X Y,X的概率分布为P{X=i}=1 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:04:46
设随机变量X和Y相互独立,Z=X Y,X的概率分布为P{X=i}=1 3
设随机变量X与Y相互独立,且服从(0,2)上的均匀分布,求Z=|X-Y|的分布函数和概率密度

因为随机变量X与Y相互独立,且服从(0,2)上的均匀分布,则x-y区间为(-2,2),从而Z=|X-Y|服从(0,2)上的均匀分布,根据若r.v.ξ服从[a,b]上均匀分布,其分布密度为P(x)=1/

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

概率论数学题~设随机变量X~N(-3,1),Y~N(2,1),且X和Y相互独立,设随机变量Z=X-2Y+7,则Z服从(

1*(-3)+2*(-2)+7=01^2*1+(-2)^2*1=5给你一个公式吧X~N(a1,b1^2),Y~N(a2,b2^2)Z=mX+nYZ服从(c,d^2)c=a1m+a2nd^2=b1^2*

设随机变量X~N(0,4),N(-1,1),且X,Y相互独立,Z=Y-2X,则Z~

E(Z)=EY-E(2X)=-1-0=-1D(Z)=DY+4DX=1+16=17所以z~(-1,17)对不起啊!题目应该是设随机变量X~N(0,4),N(-1,1),且X,Y相互独立,Z=X-2Y,则

设随机变量X~N(1,9),N(0,16),X与Y相互独立Z=X/3+Y/4,求E(Z),D(Z)

说实话,这个题不是一般的简单,只要套公式即可.E(Z)=1/3*1+1/4*0=1/3D(Z)=1/9*9+1/16*16=2

设随机变量X与Y相互独立,N(1,2),(0,1),求随机变量Z=X-Y的分布,并求P(X>Y )的概率

N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?

设随机变量X和Y相互独立,且X~E(1),Y~E(2),球Z=X+2Y的概率密度.这题用卷积公式怎么做?

Z的分布函数为F(z)=∫(0到z/2)f1(y)dy∫(0到z-2y)f2(x)dx=∫(0到z/2)(1-exp(2y-z))f1(y)dy=∫(0到z/2)2*(exp(-2y)-exp(-z)

设随机变量X与Y相互独立,且X~N(2,1),N(-2,4),Z=3X-2Y+4,求:D(Z) 与 P{Z

Z=3X-2Y+4E(Z)=E(3X-2Y+4)=E(3X)-E(2Y)+E(4)=3*2-2*2+4=9D(Z)=D(3X-2Y+4)=D(3X)+D(2Y)+D(4)=9*1+4*4=25P{Z再

设随机变量X和Y相互独立,且X~N(3,4),(2,9),则Z=3X-Y~

3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)

设随机变量X和Y相互独立,且X~E(1),E(2),求Z=X+2Y的概率密度.这题用卷积公式怎么做?

fz(Z)=fx(Z-2Y)fy(Y)的积分再问:这位网友,可以详细一点吗?我做的时候,很吃力啊!所以就发到到网上来,望能得到解答的呵呵再答:就按公式积分算就行了啊。再问:小的不才,不能安卷积公式算啊

设随机变量X,Y相互独立,且均服从N(0,0.5)分布,则Z=X-Y的概率密度为fZ(z)=

是标准正态分布.经济数学团队帮你解答.请及时评价.

顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~

是X~π(λ)泊松分布证明:P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i

若随机变量X~N(-2,4),N(3,9),且X与Y相互独立,设Z=2X-Y+5,则Z~N

用性质求出Z的期望与方差如图,得到Z~N(-2,25).经济数学团队帮你解答,请及时采纳.再问:那个方差-y拿出来就是正的?再答:方差的性质D(-Y)=(-1)^2DY=DY,所以是正的。

多维随机变量分布问题设X,Y相互独立,(0,1)Y~(0,1)则Z=X+Y的概率密度f(Z)等于?

两个正态分布的和分布(不依概率1等于常数的话)一定是正态分布.EZ=E(X+Y)=EX+EY=0DZ=D(X+Y)=DX+DY=2故Z~N(0,2)f(z)=1/(2√π)e^(-z^2/4)

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f