设随机变量X与Y相互独立,且服从区间(0,4)上的均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:18:52
设随机变量X与Y相互独立,且服从区间(0,4)上的均匀分布
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

概率论方差计算设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).

回答:设Z=-Y,于是D(Z)=D(-Y),D(X-Y)=D(X)+D(-Y)=D(X)+D(Z)=1+2=3.

19.设随机变量X~B,Y服从参数为3的泊松分布,且X与Y相互独立,则 D(X+Y)=______.

X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕

设随机变量X与Y均服从参数为λ的指数分布,且X与Y相互独立,求Z=X+Y的密度函数

fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ&#

概率论与数理统计:设随机变量x与y相互独立,且d(x)=1,d(y)=2,求d(x-y)

有公式的D(X+_Y)=DX+DY+_2cov(X,Y)既然X,Y独立,协方差必为0D(X-Y)=DX+DY=3

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设随机变量X~N(-3,1),(2,4),且X与Y相互独立,则X-2Y+11~

E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X~N(-1,2),N(2,7),且X与Y相互独立,则D(X+Y)=

解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9

设随机变量X与Y相互独立,且D(X)=5,D(Y)=3,则D(X—Y)=?

设随机变量X与Y相互独立,且D(X)=5,D(Y)=3,则D(X—Y)=D(x)+D(-y)=8

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+3)=?

随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,

设随机变量X~N(1,4),N(1,2),且X与Y相互独立.则E(X-2Y)=?D(X-2Y)=?

E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DY.所以:E(X-2Y)=EX-2EY=1-2=-1.D(X-2Y)=DX+4DY=4+4*2=12.

设随机变量X与Y相互独立,且其概率密度分别为

fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出