设随机变量X与Y相互独立,X的概率分布为P{X=i}=1 3,i=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:08:44
可以利用指数分布的特征,得到D(X)=1/4从原始理论推导的话,D(X)算起来有些麻烦E(X)=∫(0~无穷)x2e^(-2x)dx=1/2E(Y)=∫(0~1/4)4xdx=2x²](0~
X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕
var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5
fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ
如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n
D(x)+D(y)
分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答
E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?
解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9
因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0
随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,
再问:лл���鷳����һ����Ŀ�е�fY(x)��ʲô������再答:��������Y�ĸ����ܶȺ���再问:��������ô��X��再答:xֻ�ǼǺŶ��ѣ��Ҹ�Ĵ���ҲӦͳ
1fx=int(-oo,+oo)f(x,y)dy=1fy=int(-oo,+oo)f(x,y)dx=0.5e^(-0.5y)f(x,y)=fx*fy,独立20-8上的均匀分布EX=int(0,8)x/
1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0
相互独立再问:那如果设f(x)为概率密度,那么f(2x)=2f(x)还是f(2x)呢?谢谢!再答:先给分吧再问:请讲一下吧,谢谢!再答:第一个再答:再答:对其求导
fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出