设随机变量xy相互独立,ex=1,dx=2,ey=-1则e(2x-y 1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:40:49
设随机变量xy相互独立,ex=1,dx=2,ey=-1则e(2x-y 1)
设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

设随机变量XY相互独立,且服从以1为参数的指数分布,求Z=X+Y的概率密度.急求解

用联合密度的方法去求,算z和x的联合密度,再对其密度关于x积分,就可以了

考研 设随机变量X1,X2,X3相互独立

数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3

如图 设xy 是两个相互独立的随机变量 求得是D(x+y)

如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n

有没有概率高手,设XY相互独立都服从标准正态分布.则随机变量Z=2X+Y的概率密度是多少.

1.XY相互独立,相关系数r=02.E(Z)=E(2X+Y)=2E(X)+E(Y)=03.D(Z)=[(2X+Y)^2]=4D(X)+D(Y)+4E(X)E(Y)=4+1+0=54.N(0,5)5.f

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

设随机变量X,Y独立同分布,且P(X=1)=P(X=-1)=1/2,定义Z=XY,证明X,Y,Z两两独立,但不相互独立

两两独立你是证了,但还要一个式子成立主是P(x=xi,y=yi,z=zi)=P(x=xi)P(y=yi)P(z=zi)成立才行但P(X=-1,Y=-1,Z=XY=-1)=0,这是因为X,Y取-1时,Z

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

随机变量的数学期望请问如果随机变量XY相互独立的话怎么推出EX=EY啊?

楼主的这个结论明显是得不出来的.如果随机变量XY相互独立,那么有:EXY=EXEYXY相互独立,那么它们的相关系数:ρ=0ρ=Cov(X,Y)/√(DXDY)=0协方差:Cov(X,Y)=0Cov(X

设随机变量X与Y相互独立,且EX=2,DX=1,EY=1,DY=4,求U=X-2Y与V=2X-Y的相关系数,求解题啊&#

再问:太满意啦,太感谢啦再问:原来是我求错了DU和DV,我当成减法了,老师上课讲的时候也没在意,现在才发现我的错误,太谢谢你了

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设随机变量XY相互独立X为标准正态分布Y为【0.1】上均匀分布求P{X>Y}

所给题中ξ服从标准正态分布,均值miu为0,方差sigma为1,根据正态分布性质有:P{1

1.设随机变量X,Y相互独立,且EX=3,DX=2.1;EY=4,DY=2.4,则E(2X-Y)2=( ).

概率论书上有例题EX期望DX方差整体不能分开E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DYE(2X-Y)=2EX-EY

设随机变量X与Y相互独立,证明:D(XY)〉=D(X)D(Y).

知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0

设随机变量X,Y相互独立,且服从[0,]上的均匀分布,求XY的概率密度

求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=2,D(Y)=4,则D(XY)=______

E{[XY-E(XY)]^2}=E(X^2Y^2)-E(XY)^2=E(X^2)*E(Y^2)-E(X)^2*E(Y)^2=[D(X)+E(X)^2][D(Y)+E(Y)^2]-E(X)^2*E(Y)

设随机变量XY相互独立,且均服从正太分布N(0,1)则概率P(XY>0)为多少

X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.5P(XY>0)=P(X>0,Y>0)+P(X0)+P(X再问:X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f