设随机变量XY相互独立 且均服从区间01的均匀分布 则P(X2≤Y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:49:15
令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y
fX(x)=1,x∈(0,1)其他为0.P(X1}=1-P{max{X,Y}
用联合密度的方法去求,算z和x的联合密度,再对其密度关于x积分,就可以了
fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ
大哥是F分布的定义啊F(5,4)
由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2 由Y服从参数为3的指数分布,得出E(Y)=3 由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
E(X-Y)=∑∞P(X1)(Y1)(X1-Y1)=∫∞∫∞f(x)f(y)(x-y)dxdy=0希望能帮到您~
密度函数f(x)=1,0
均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/
应该是求X+Y的概率密度吧~∵X、Y相互独立∴X+Y仍服从正态分布∴E(X+Y)=EX+EY=0+0=0D(X+Y)=DX+DY=0.5+0.5=1∴X+Y服从N(0,1)分布,其概率密度函数为(设z
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了
正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x
X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.5P(XY>0)=P(X>0,Y>0)+P(X0)+P(X再问:X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.
fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f