设随机变量X1,X2......XN,相互独立,且都服从(0,1)上的均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:24:28
设随机变量X1,X2......XN,相互独立,且都服从(0,1)上的均匀分布
一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}

想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U

考研 设随机变量X1,X2,X3相互独立

数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3

设随机变量X1,X2,X3,X4相互独立,且具有相同的分布,数学期望为0,方差为B^2,令 X=X1+X2+X3,

E(X)=E(X1+X2+X3)=E(X1)+E(X2)+E(X3)=0,同理E(Y)=0E(XY)=E(X2^2)+E(X3^2)=2B^2Cov(X,Y)=E(XY)-E(X)*E(Y)=2B^2

设随机变量X1,X2,X3相互独立,其中X1~b(5,0.2),X2~,X)4,0(N3服从参数为3的泊松分布.

随机变量X1,X2,X3相互独立故D(Y)=D(X1-2X2+3X3)=D(X1)+D(2X2)+D(3X3)=D(X1)+4D(X2)+9D(X3)X1~b(5,0.2),二项分布所以D(X1)=5

设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望

具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:

设随机变量X1,X2,X3相互独立,X1~U[0,6],X2服从λ=1/2的指数分布,X3~π(3),求D(X1-2X2

因为x1,x2,x3相互独立所以D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)X1~U[0,6]D(X1)=(6-0)^2/12=3X2服从λ=1/2的指数分布D(x2)=2^2=

设X1,X2,...,X6为来自正态总体N(0,σ^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X4+X

服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.

设三维随机变量(X1,X2,X3)的联合概率密度函数为:

我也想给你做,不过你给的范围不清楚,没法做下去,很简单的计算,具体思路如下:再问:这是老师给的原题第一题再答:题目有点问题,应该换成证明X,Y,Z两两独立,但不相互独立。

设随机变量X1,X2,...Xn相互独立,且都服从数学期望为1的指数分步,求Z=min{X1,X2,...Xn}的数学期

P[Z>t]=P[X1>t,...,Xn>t]=P[X1>t]^n,得知Z亦为参数为n的指数分步,所以期望是1/n,方差是1/n^2.做数学题最大的乐趣是想题,考试的时候没有人给你问.

概率论题目设X1,X2,…,x6为来自正态总体N(0,o^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X

服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√

设随机变量X1和X2相互独立,且都服从正态分布N(0,1/2),令Y=X1-X2,求E|Y|

Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为

D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,

概率论问题求教设三个连续型随机变量X1,X2,X3互相独立同分布,则P(x1

1/6吧,三个连续随机变量相等的情况忽略为0,所以x1,x2,x3从小到大排就是3的全排列之1非要证明的话只能用条件概率一步步展开了

设x1,x2(x1

根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X