设随机变量X1,X2-,Xn独立同分布,EX1=u,DX1=8,记Yn=1 n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:30:56
设随机变量X1,X2-,Xn独立同分布,EX1=u,DX1=8,记Yn=1 n
关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=m

这两题貌似很难的,在我们学校的论坛上见过,有牛人回答出了:第一题:U的概率分布FU(u)=P{U

一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}

想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U

设随机变量X1,X2,…Xn相互独立,且都服从(0,1)上的均匀分布.问:(1)求U=max{X1,X2,…Xn}数学期

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望

具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:

已知几个随机变量X1,X2,X3.Xn服从正态分布,

首先考虑两个的情况,如果证明了y=ax1+bx2是两个正态的和,也是正态的,接下来就直接用归纳法证毕,因为比如3个和的情况就是ax1+bx2+cx3=y+cx3也是两个正态的和,因此正态.n就能退化到

设随机变量X1,X2,...Xn相互独立,且都服从数学期望为1的指数分步,求Z=min{X1,X2,...Xn}的数学期

P[Z>t]=P[X1>t,...,Xn>t]=P[X1>t]^n,得知Z亦为参数为n的指数分步,所以期望是1/n,方差是1/n^2.做数学题最大的乐趣是想题,考试的时候没有人给你问.

设连续型随机变量X1.,Xn相互独立,且分布相同,求P{Xn>max(X1,.Xn-1)}

P(Xn>max(X1,...,Xn-1)=P(Xn>X1)*P(Xn>X2)*.*P(Xn>Xn-1)设X的分布函数为F(x),密度为f(x)则P(Xn>X1)=积分(xn>x1){f(xn)f(x

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设随机变量X1,X2.Xn中任意两个的相关系数均为ρ,试证明ρ≥-1/(n-1)

由相关系数定义ρ=E((Xi-Xi')(Xj-Xj')/sigma(i)sigma(j),其中sigma(i)是Xi的方差,X'是Xi的期望.将Xi全部正则化(就是通过平移和伸缩使期望为0,方差为1)

设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+

最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2

设X1、X2、X3……Xn是整数,

设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a

设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)

设X1...Xn的概率密度函数是fX(x),概率分布函数是FX(x)设随机变量Y=max(X1,...,Xn-1)先求Y的概率分布函数FY(y):FY(y)=P{Y

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设随机变量X1,X2,……Xn相互独立同分布,且都有密度函数f(x)=1/π(1+x^2),证X1,X2……Xn不满足中

Xi服从Cauchy分布,EXi不存在,所以X1,X2……Xn不满足中心极限定理条件再问:Cauchy分布,这个没学过再答:就是密度是科西分布,按期望的定义其期望不存在

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的

注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了

设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X

E(Xn)=0×0.5+2×0.5=1E(X)=∑(1~n)E(Xi)/(3^i)=∑(1~n)1/(3^i)∑(1~n)1/(3^i)是一个等比数列,公比1/3,用等比求和公式得E(X)=1/2D(

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X