设随机变量x1,x2,x3相互独立,且有x1~b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:50:35
设随机变量x1,x2,x3相互独立,且有x1~b
概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布

再问:哦哦,明白了,谢谢你啦!!再答:欢迎继续讨论,我这学期重修概率论再问:呵呵,我们明天考试再答:这....这么快再答:祝你成功啊再问:恩,半学期学完。再问:嗯嗯,谢谢

概率论抽样分布问题~设X1,X2,X3,X4相互独立且服从相同分布χ^2(1),则X1+X2/X2+X4~

服从自由度为(2,2)的F分布X1+X2和X2+X4都服从自由度为2的卡方分布,所以[χ2(2)/2]/[χ2(2)/2]~F(2,2)建议你看下书本吧,三大抽样分布.

设X1,X2,X3为相互独立的随机变量,且都服从(0,1)上的均匀分布,求三者中最大者大于其他两者之和的概率.

(X1,X2,X3)在立体区域0x1+x2}的概率之和.且由对称性不难看出这三个事件的概率是相等的.而概率P{x3>x1+x2}就是由平面x3=x1+x2,x1=0,x2=0,x3=1这四个平面所围立

考研 设随机变量X1,X2,X3相互独立

数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3

设随机变量X1,X2,X3,X4相互独立,且具有相同的分布,数学期望为0,方差为B^2,令 X=X1+X2+X3,

E(X)=E(X1+X2+X3)=E(X1)+E(X2)+E(X3)=0,同理E(Y)=0E(XY)=E(X2^2)+E(X3^2)=2B^2Cov(X,Y)=E(XY)-E(X)*E(Y)=2B^2

设随机变量X1,X2,X3相互独立,其中X1~b(5,0.2),X2~,X)4,0(N3服从参数为3的泊松分布.

随机变量X1,X2,X3相互独立故D(Y)=D(X1-2X2+3X3)=D(X1)+D(2X2)+D(3X3)=D(X1)+4D(X2)+9D(X3)X1~b(5,0.2),二项分布所以D(X1)=5

设随机变量X1,X2,X3相互独立,X1~U[0,6],X2服从λ=1/2的指数分布,X3~π(3),求D(X1-2X2

因为x1,x2,x3相互独立所以D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)X1~U[0,6]D(X1)=(6-0)^2/12=3X2服从λ=1/2的指数分布D(x2)=2^2=

已知几个随机变量X1,X2,X3.Xn服从正态分布,

首先考虑两个的情况,如果证明了y=ax1+bx2是两个正态的和,也是正态的,接下来就直接用归纳法证毕,因为比如3个和的情况就是ax1+bx2+cx3=y+cx3也是两个正态的和,因此正态.n就能退化到

设X1,X2,X3相互独立,都服从b(1,0.5),X=X1+X2+X3,则P(X >1) =( ).

把有两个1和三个1的情况加起来就好了.或者1减去一个1和没有1的情况.

设X1,X2,...,X6为来自正态总体N(0,σ^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X4+X

服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.

设三维随机变量(X1,X2,X3)的联合概率密度函数为:

我也想给你做,不过你给的范围不清楚,没法做下去,很简单的计算,具体思路如下:再问:这是老师给的原题第一题再答:题目有点问题,应该换成证明X,Y,Z两两独立,但不相互独立。

概率论题目设X1,X2,…,x6为来自正态总体N(0,o^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X

服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√

设随机变量X1X2X3...X5相互独立同分布且其方差存在,记W=X1+X2+X3,Z=X4+X3+X5,则W与Z的相关

设X期望是a,方差是,则DX=bDW=3b,DZ=3b,D(W-Z)=DW+DZ-2COV(W,Z),则COV(W,Z)=b,则相关系数等于1/3

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为

D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,

概率论问题求教设三个连续型随机变量X1,X2,X3互相独立同分布,则P(x1

1/6吧,三个连续随机变量相等的情况忽略为0,所以x1,x2,x3从小到大排就是3的全排列之1非要证明的话只能用条件概率一步步展开了