设随机变量x y服从的分布分别为 x y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:00:35
X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
X~π(a)Y~π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k
大哥是F分布的定义啊F(5,4)
若是没有记错的话,虽然卷积公式在连续型随机变量中提出来,但是有说过对于离散型随机变量也可使用,把那个积分改成求和就行了再问:能具体为我证明此题吗?谢谢再答:不知道公式怎么打,只能简要说一说:因为X、Y
请看看我在那里的答案吧,有问题请提出来
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
f(x)=1,1≤x≤2f(y|x)=xe^(-xy),y≥0f(y|x)=f(x,y)/f(x)=f(x,y)=xe^(-xy)令z=xy,z≥0F(z)=P(Z≤z)=P(XY≤z)=∫(1,2)
3X/2Y=(X/2)/(Y/3),所以服从自由度(2,3)的F分布.
L=Lamda,M=MiuP(x,y)=1/L*1/Mexp(-Lx)*exp(-My)a>0P(y-x=a)=int(x,0,+inf)(P(x,x+a))=1/(L*M)*inf(exp(-Lx-
因为X~t(k),由定义可令X=A/根号下B/k,其中A~N(0,1),X^2(k)分布Y=X^2=A^2/(B/k),因为A~N(0,1),所以A^2~X^2(k)Y=(A^2/1)/(B/K),则
可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!
泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)
X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.5P(XY>0)=P(X>0,Y>0)+P(X0)+P(X再问:X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.
再问:能不能具体解释一下再答:再问:第二行和第三行我不是很懂?为什么是1/4?再答:P(X=0,Y=-1)+P(X=-1,Y=-1)+P(X=1,Y=-1)=P(Y=-1)=1/4但是P(X=-1,Y
π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m