设随机变量 X~U(0,3)求Y=X^2 的密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:49:33
设随机变量 X~U(0,3)求Y=X^2 的密度函数
设随机变量X与Y相互独立,并且均服从U(0, θ),求E(max{X,Y})

这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混

设随机变量X与Y独立,U(0,2),e(2),求二维随机变量(X,Y)的联合概率密度,概率P(X≤Y)

既然两者独立,那就把两者的概率密度直接相乘就可以了.

设随机变量x~U[0,1]Y~U[0,2]并且X和Y相互独立 求min[x,y]的概率密度函数

Z=min(X,Y)f(x,y)=1*(1/2)=1/2P(Z>=z)=P(X>=z,Y>=z)最小的那个都大於z,全都大於z=∫(z~2)∫(z~1)1/2dxdy=(1-z)(2-z)/2(0

设随机变量X>0,Y=X2-U(0,1),试求X的密度函数fx(x)

/>这里要使用这个公式:如果X=g(Y),且g在X可能值得集合上存在可导反函数,则X,Y的密度函数有如下关系:题目有一点不太清楚.如果Y=X^2(Y是X的平方)的话:因为X>0,所以在(0,1)

设X~U(-θ/2,θ),其中θ>0为常数,求随机变量Y=|X|的密度函数

均匀分布再问:答案不对啊--再答:更正:

设随机变量X~U(0,1),求Y=X^2的概率密度

先求分布函数,对其求导,就获得概率密度函数;因为概率密度函数积分可以获得分布函数.p(x)=1,when0

设随机变量X~U(0,1),求Y=X²的概率密度

P{Y≤y}=P{x^2≤y}=P{-√y≤x≤√y}=1-2P{x≥√y}=1-2(1-P{x≤√y})=-1+2P{x≤√y}2F(√y)-1fY(y)=[F(√y)]'=f(√y)/2√

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

设随机变量X~U(0,1),求Y=1/X的概率密度函数

再问:后面的的1-1/y怎么到最后的答案再答:求导啊,密度函数就是分布函数求导

设随机变量X~U(0,1) 求Y= -2ln(x 概率密度

Y=-2ln(X)在X~(0,1)上是相互一对一的函数关系所以可以使用密度函数乘上导数的方法fy(y)=fx(x(y))*|dx/dy|=1|dx/dy|Y=-2ln(X)lnX=-0.5YX=e^(

设随机变量x~u(0,2)求函数Y=1-X的概率密度,概率p{0

你的1/18是怎么来的?明明fx(x)=1/2而已,Y应该也是啊,Jacobbi行列式为1,所以fY(y)=1/2变范围(-1再问:大概可能是这样再答:1-3X?那你题目给错了,你求导求错了fY(y)