设随机函数X参数为1的指数分布,则E(e^-2X)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:18:31
解 注意:若X是一个连续型随机变量,F(x)是其分布函数,则随机变量Y=F(X)一定服从(0,1)上的均匀分布. 最好能记住这个结果,在做题时非常方便.对于本题来说,若你知道Y=1
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
这个问题其实挺简单的,你看一下课本吧,基础题目呦!
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
参数为1,就是λ为1
分布函数:p{Y
X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y
把他们各自的密度函数写出来再一加就是e^-2(e^x-e^y)
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
概率密度f(x)=1/3e^(-x/3),x>00,x≤0分布函数F(x)=∫1/3e^(-x/3)dx=1-e^(-x/3),x>0【从0积分到x】0,x≤0
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
X的分布函数:F_X(x)={1-e^-λx,x>0{0,x
F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0
X落入区间(1,2)内的概率P=积分(1-->2)λe^(-λx)dx=e^(-λ)-e^(-2λ)概率达到最大-->dP/dλ=0-->λ=ln2
Y=X^2>0PY(y)={0,y0时,FY(y)=P(-y^(1/2)
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
x再问:跟[X](X取整)没有关系吗?你的解答没有体现取整再答:x