设都是n维的单位列向量,则a-b与a b的内积为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:49:24
设都是n维的单位列向量,则a-b与a b的内积为
设A是m×n矩阵,且r(A)=1,则存在m维列向量α与n维列向量β,使得A=α×(β的转置)

既然A是秩为1的mxn矩阵,则存在可逆矩阵P,Q使得A=PA'Q其中A'为A的标准型,就是只有最左上角为1,其他都为0的矩阵则PA'只有第一列为非0,A‘Q只有第一行为0,取a为PA'的第一列,b为A

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设E为n级单位矩阵,a,b为给定的n维列向量并有a’b>0,证明H=E-(bb')/(b'b)+(aa')/(a'b)是

设e1=b/|b|,可以有单位正交基:e1,e2,.,en.在这组基下,向量b的坐标为(b1,0,...,0)',向量a的坐标为(a1,.,an)',其中a1*b1=a‘b>0.H所对应的线性变换在基

n维单位列向量是什么

n维单位行向量(a1,a2,a3,.an),其中a1^2+a2^2+.an^2=1,它的转置就是n维单位列向量

什么是n维单位列向量 与n维单位向量的区别 请举个例子说下

后者是指该向量有n个分量,前者表示n个向量(可以有任意个分量)

几代:设α是n维列向量(n > 1),则n阶方阵A = ααT 的行列式|A|的值为?

1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~

|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0有非零解,则r

线性代数!设a为n维列向量,且a^Ta=1,令A=E-aa^T,其中E是n阶单位矩阵,

R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E

设A,B都是n阶矩阵,B不等于0向量,且B的每一列都是方程组AX=0的解,则detA=?

这样想,矩阵B的每一列都是AX=0的解,这就说明AX=0有很多个解,也就是说这个方程的系数矩阵A肯定是不可逆的,当然它的行列式等于0再问:怎么说的不可逆再答:方程AX=0有多个非零解,系数矩阵A肯定不

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:任意n维向量B都有//AB//=

分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'

设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵

证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|等于?

B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解说明齐次线性方程组Ax=0有非零解,故其系数行列式|A|=0.(n元齐次线性方程组当方程的个数等于未知数的个数时,方程组有非零解的充要

设P为n阶正交矩阵,x是n维单位列向量,则||Px||=()

||Px||=1,具体展开根据范数的定义再问:我只学过这个三个性质,但似乎都无法用来解这个题:⒈║x║≥0,且║x║=0x=0;⒉║cx║=│c│║x║;⒊║x+y║≤║x║+║y║。而且我这个教材上

设α使n维列向量,A是n阶正交矩阵,则||Aα||=||α||

因为A是n阶正交矩阵,所以A'A=E||Aα||=√(Aα,Aα)=√(Aα)'(Aα)=√α'A'Aα=√α'Eα=√α'α=||α||

设P为n阶正交矩阵,x是n维单位长的列向量,则||Px||=()麻烦各路高人帮忙解答,

||Px||=()^(0.5)=(Px)'*(Px)=x'P'Px=x'x=1其中表示内积,“'”表示转置

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=_________.

|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0

设n维列向量a1a2a3...am线性无关,则n维向量组b1b2.bm线性无关的充要条件

矩阵等价则矩阵的秩相同所以r(b1,...,bm)=r(B)=r(A)=r(a1,...,am)=m所以b1,...,bm线性无关

设a,b,c都是单位向量,且a*b=0则(a-c)*(b-c)的最小值

a*b=0可知a和b反向既成180度角(a-c)*(b-c)=c^2-|a|*|c|cos-|b|*|c|*csoa,b,c都是单位向量=>1-cos-cos且a,c和b,c所成的角互补=>cos=c

怎么证A是m•n矩阵,b是m维列向量,非齐次方程组总有解与A的列向量组和单位向量等价

Ax=b总有解则Ax=εi有解所以εi可由A的列向量组线性表示所以单位向量可由A的列向量组线性表示所以单位向量与A的列向量组等价反之,因为任一向量b可由单位向量组线性表示所以b可由A的列向量组线性表示