设连续随机变量X的概率密度为f(x)=Ae^- x ,x属于负无穷到正无穷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:38:44
设连续随机变量X的概率密度为f(x)=Ae^- x ,x属于负无穷到正无穷
设随机变量X的概率密度为f(x)

当x≧0时,y≧1,f(x)=e^(-x),F(x)=∫f(x)=-e^(-x)+C,当x→+∞时,F(x)=-e^(-x)+C=1,所以C=1,F(x)=1-e^(-x),所以F(y)=1-1/y,

设连续型随机变量X的概率密度为F(x)=

E(X)=∫(0~1)x*2(1-x)=2(1/6)=1/3E(X²)=2∫(0~1)x²(1-x)=2(1/12)=1/6D(X)=E(X²)-E(X)²=1

设连续型随机变量X的概率密度为f(x)={2(1-x),0

EZ=∫ZP(x)dx=∫,e^x2(1-x)dx=2∫,e^xdx-∫,xe^xdx,这个在0,1之间积分即可EZ^2=∫Z^2P(x)dx=∫e^2x(2-2x)dx在(0,1)上球定积分DZ=E

设连续型随机变量X的概率密度为f(x)={Ax平方,0

分布函数F(x)=积分(从负无穷到x)f(t)dt.F(正无穷)=1=>积分(从0到1)Ax^2dt=1A*1^3/3-A*0^3/3=1A=3.

设连续型随机变量X的概率密度为f(X)=kx的a次方,0

K=3a=2E(x)=X乘以K乘以X的a次方的积分(0

相关系数 设连续型随机变量X的概率密度为f(x)= 1/2exp(-|x|),DX

首先去掉绝对值,将随机变量X的范围分成两部分,(负无穷,0),[0,正无穷),然后计算x平方的期望,x的期望的平方,再相减即可.要用到分部积分法,罗比达法则,反常积分的知识.

设随机变量X的概率密度为

新年好!可用概率密度积分为1如图得出c=-1/2.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量x的概率密度为f(x)=.

以X取值为分段标准当X

设连续型随机变量X的概率密度为f(x)=ax+2,0

对f(x)=ax+2积分,得0.5ax^2+2x,把上下限0与1代入得,F(x)=0.5a+2=1a=-2对xf(x)=ax^2+2x积分,得1/3*ax^3+x^2,把上下限0与1代入得,E(x)=

设连续型随机变量X的概率密度函数为为f(x)=1/2*e^(-|x|),-∞

对概率密度函数积分就可以得到分布函数,当x=0时,f(x)=1/2*e^(-x)故分布函数F(x)=F(0)+∫(上限x,下限0)1/2*e^(-x)dx=F(0)-1/2*e^(-x)[代入上限x,

设连续型随机变量X的概率密度函数为为f(x)=1/2*e^(-|x|),-∞

E(x)=∫(-∞,+∞)xf(x)dx=0D(x)=E(x^2)-(E(x))^2=E(x^2)=∫(-∞,+∞)x^2f(x)dx=2∫(0,+∞)x^2f(x)dx=∫(0,+∞)x^2e^(-

设连续型随机变量 的概率密度为【f(x)={ax

解题思路:本题考查正态分布的分布密度函数、均值和方差的性质等知识,由随机变量ξ的概率密度函数的意义知:概率密度函数图象与x轴所围曲边梯形的面积即为随机变量在某区间取值的概率,由此将问题转化为计算定积分

设随机变量x的分布函数f(x)连续,求随机变量F(x)的概率密度函数!

因为Y~F(X)F(X)是一个分布函数,值域在0~1之间所以随机变量Y也要取0~1之间的数字当y

设连续型随机变量X的概率密度为f(x)=x/2 0

(0,2)∈[-1,5]P{-1再问:那P{-1

设连续型随机变量X的概率密度为 f(x)={-2x+2,0

(1)1=∫[0,k](-2x+2)dx=-k^2+2kk=1(2)F(x)=0x