设连续随机变量X与Y相互独立且服从相同的分布,其概率密度函数为f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:21:26
xy为独立变量,D(2X-3y)=2^2Dx+3^2DY=4*6+9*3=51
令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y
fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ
有公式的D(X+_Y)=DX+DY+_2cov(X,Y)既然X,Y独立,协方差必为0D(X-Y)=DX+DY=3
首先F是连续分布函数,你就当他是个连续函数,连续函数相加依然是连续函数这是显然的啊
1/(PI)^O.5
分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答
E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9
任取ε>0实数域可以表示成以下集合的并:(r-ε,r+ε),其中令r取遍所有有理数P{X=Y}=P(X=Y,Y∈R)≤∑(r∈Q)P(X=Y,r-ε
假定X,Y的联合分布为f_(X,Y)(x,y),则因为X与Y独立,f_(X,Y)(x,y)=f_X(x)f_Y(y)显然,随机向量(X^2,Y^2)是随机向量(X,Y)的一个变换,则有:f_(X^2,
正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)
因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果
再问:лл���鷳����һ����Ŀ�е�fY(x)��ʲô������再答:��������Y�ĸ����ܶȺ���再问:��������ô��X��再答:xֻ�ǼǺŶ��ѣ��Ҹ�Ĵ���ҲӦͳ
E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DY.所以:E(X-2Y)=EX-2EY=1-2=-1.D(X-2Y)=DX+4DY=4+4*2=12.
fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出
设密度函数为f(x),分布函数为F(x)P(X