设连续型随机变量x的密度f(x)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:47:43
设连续型随机变量x的密度f(x)=
已知连续型随机变量F(X)的密度函数为

X的分布函数F(x)=∫[-inf.,x]f(t)dt=…….分段讨论:  当x0时,F(x)=∫[-inf.,0]f(t)dt+∫[0,x]f(t)dt=……,注意到F(+inf.)=1,确定A=…

设连续型随机变量X的概率密度为F(x)=

E(X)=∫(0~1)x*2(1-x)=2(1/6)=1/3E(X²)=2∫(0~1)x²(1-x)=2(1/12)=1/6D(X)=E(X²)-E(X)²=1

设连续型随机变量X的概率密度

∫(-∞,+∞)f(x)=Aarctgx|(0,+∞)=Aπ/2由于是概率函数,应有Aπ/2=1,解得A=2/πP{x≤1}=∫(-∞,1)f(x)=2/πarctgx|(0,1)=(2/π)×(π/

设连续型随机变量X的概率密度为f(x)={2(1-x),0

EZ=∫ZP(x)dx=∫,e^x2(1-x)dx=2∫,e^xdx-∫,xe^xdx,这个在0,1之间积分即可EZ^2=∫Z^2P(x)dx=∫e^2x(2-2x)dx在(0,1)上球定积分DZ=E

设连续型随机变量X的概率密度为f(x)={Ax平方,0

分布函数F(x)=积分(从负无穷到x)f(t)dt.F(正无穷)=1=>积分(从0到1)Ax^2dt=1A*1^3/3-A*0^3/3=1A=3.

设连续型随机变量x的概率密度 f(x)=Ae-x ,x>=0.0 x

你给出的概率密度有点不清楚.我的理解是这样,A*e^(-x)x≥0f(x)=0x<0根据概率函数的性质,(-∞→+∞)∫f(x)dx=1则有,(0→+∞)∫Ae^(-x)dx=-Ae^(-x)|(0→

相关系数 设连续型随机变量X的概率密度为f(x)= 1/2exp(-|x|),DX

首先去掉绝对值,将随机变量X的范围分成两部分,(负无穷,0),[0,正无穷),然后计算x平方的期望,x的期望的平方,再相减即可.要用到分部积分法,罗比达法则,反常积分的知识.

设连续型随机变量,变量X的密度函数为f(x)={cx,0

∫(0~2)cx=1c(4/2)=1c=1/2连续型随机变量任意一点概率都为0P(X=2)=0P(0

设连续型随机变量X的概率密度为f(x)=ax+2,0

对f(x)=ax+2积分,得0.5ax^2+2x,把上下限0与1代入得,F(x)=0.5a+2=1a=-2对xf(x)=ax^2+2x积分,得1/3*ax^3+x^2,把上下限0与1代入得,E(x)=

设连续型随机变量X的概率密度函数为为f(x)=1/2*e^(-|x|),-∞

对概率密度函数积分就可以得到分布函数,当x=0时,f(x)=1/2*e^(-x)故分布函数F(x)=F(0)+∫(上限x,下限0)1/2*e^(-x)dx=F(0)-1/2*e^(-x)[代入上限x,

设连续型随机变量X的概率密度函数为为f(x)=1/2*e^(-|x|),-∞

E(x)=∫(-∞,+∞)xf(x)dx=0D(x)=E(x^2)-(E(x))^2=E(x^2)=∫(-∞,+∞)x^2f(x)dx=2∫(0,+∞)x^2f(x)dx=∫(0,+∞)x^2e^(-

设连续型随机变量 的概率密度为【f(x)={ax

解题思路:本题考查正态分布的分布密度函数、均值和方差的性质等知识,由随机变量ξ的概率密度函数的意义知:概率密度函数图象与x轴所围曲边梯形的面积即为随机变量在某区间取值的概率,由此将问题转化为计算定积分

设随机变量x的分布函数f(x)连续,求随机变量F(x)的概率密度函数!

因为Y~F(X)F(X)是一个分布函数,值域在0~1之间所以随机变量Y也要取0~1之间的数字当y

设连续型随机变量X的概率密度为f(x)=x/2 0

(0,2)∈[-1,5]P{-1再问:那P{-1

设连续型随机变量X的概率密度为 f(x)={-2x+2,0

(1)1=∫[0,k](-2x+2)dx=-k^2+2kk=1(2)F(x)=0x