设赖木达=1 2为可逆矩阵A的一个特征值,则矩阵(2AT)-1有一个特征值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:56
设赖木达=1 2为可逆矩阵A的一个特征值,则矩阵(2AT)-1有一个特征值是
求:A为可逆矩阵则(A*)*=|A|^(n-2)A的证明

可以直接验证A*A=|A|E(E为单位矩阵)A*=|A|A^(-1).∴|A*|=|A|^(n-1).(A*)^(-1)=(1/|A|)A(A*)*=}A*|(A*)^(-1)=|A|^(n-1)(1

设A为n阶非零实矩阵,A*=AT,其中A*为A的伴随矩阵.证明:A可逆

A为非零矩阵所以A的秩>0假设A不可逆则A的秩=r(A)+r(B)-n可知0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n=r(A*)-1从而r(A*)0从而r(A*)=1于是r(AT)=

线性代数逆矩阵那一节的定理2:若|A|不等于0,则矩阵A可逆,A^(-1)=(1/|A|)*(A*),A*为矩阵A的伴随

AB=BA=E是A^(-1)=B,B^(-1)=A的充分必要条件.AB=BA只能说AB满足乘法的交换律.再问:逆阵的意思不是说AB=BA,而A就是可逆这意思吗?为什么它要等于E?再答:定义中要求的,没

线性代数证明题:一、设A,B均为n阶矩阵,切A的平方—2AB=E.证明AB-BA+A可逆

证明:A^2-2AB=EA(A-2B)=E说明A可逆,且A的逆为A-2B上式变形得到B=(A^2-E)/(2A)代入AB-BA+A化简得到AB-BA+A=A(A^2-E)/(2A)-(A^2-E)A/

求可逆矩阵P使PA为矩阵A的行最简形矩阵

(A,E)=123100234010345001r2-2r1,r3-3r11231000-1-2-2100-2-4-301r1+2r2,r3-2r210-1-3200-1-2-2100001-21r2

设分块矩阵D=(C A B 0),其中A为n阶可逆矩阵,B为m阶可逆矩阵.求|D|以及D的逆

行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|

线性代数之证明题2设A为可逆矩阵,证:A的伴随矩阵A*可逆,且A*的逆=A逆的*

因为A可逆,所以|A|!=0由AA*=|A|E,两边取行列式,得|A||A*|=|A|^n由|A|!=0,得|A*|=|A|^(n-1)!=0.所以A*可逆.再由AA*=|A|E,知A*=|A|A逆所

您好,请问如何证明矩阵A乘该矩阵A的转置为可逆矩阵?

这是个错误结论比如A是3*2矩阵,则AA^T是3阶方阵,其秩不超过2<3,不可逆

线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵

原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A

已知矩阵A为可逆二阶矩阵,且A^2=A,则A的特征值为?

设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

证明,设A为n阶可逆矩阵,A*与A的伴随矩阵,证(A*)=n

因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

矩阵A为可逆阵的充要条件是

不知道你要这个干什么,刚好我们今天学到这里...矩阵A可逆的充要条件是A非退化,就是|A|不等于0

大学矩阵问题若可逆矩阵A及其逆矩阵A(-1)的元均为整数 求证A的行列式值为正负一

由行列式的定义,可以知道由整数组成的行列式,都是整数的加减乘法所以结果还是整数.设|A|=n整数所以|A-1|=1/n由已知还是整数所以n为正负一,否则1/n不可能为整数证毕

设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激

AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.

关于可逆矩阵的问题(1)A,B,C为n阶矩阵,且AB=BC=CA=E,则A^2+B^2+C^2=还有一题:设n阶矩阵A满

AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C