设赖木达=1 2为可逆矩阵A的一个特征值,则矩阵(2AT)-1有一个特征值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:56
可以直接验证A*A=|A|E(E为单位矩阵)A*=|A|A^(-1).∴|A*|=|A|^(n-1).(A*)^(-1)=(1/|A|)A(A*)*=}A*|(A*)^(-1)=|A|^(n-1)(1
A为非零矩阵所以A的秩>0假设A不可逆则A的秩=r(A)+r(B)-n可知0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n=r(A*)-1从而r(A*)0从而r(A*)=1于是r(AT)=
AB=BA=E是A^(-1)=B,B^(-1)=A的充分必要条件.AB=BA只能说AB满足乘法的交换律.再问:逆阵的意思不是说AB=BA,而A就是可逆这意思吗?为什么它要等于E?再答:定义中要求的,没
|A|=2≠0可逆
证明:A^2-2AB=EA(A-2B)=E说明A可逆,且A的逆为A-2B上式变形得到B=(A^2-E)/(2A)代入AB-BA+A化简得到AB-BA+A=A(A^2-E)/(2A)-(A^2-E)A/
(A,E)=123100234010345001r2-2r1,r3-3r11231000-1-2-2100-2-4-301r1+2r2,r3-2r210-1-3200-1-2-2100001-21r2
行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|
因为A可逆,所以|A|!=0由AA*=|A|E,两边取行列式,得|A||A*|=|A|^n由|A|!=0,得|A*|=|A|^(n-1)!=0.所以A*可逆.再由AA*=|A|E,知A*=|A|A逆所
这是个错误结论比如A是3*2矩阵,则AA^T是3阶方阵,其秩不超过2<3,不可逆
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
不知道你要这个干什么,刚好我们今天学到这里...矩阵A可逆的充要条件是A非退化,就是|A|不等于0
由行列式的定义,可以知道由整数组成的行列式,都是整数的加减乘法所以结果还是整数.设|A|=n整数所以|A-1|=1/n由已知还是整数所以n为正负一,否则1/n不可能为整数证毕
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.
AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C