设等比数列[an]满足a3=3 2,s3=9 2,求q与a1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:57:56
a2a4=a3*a3=144a2+a4=30a2=6a4=24q=2a1=3an=3*2^(n-1)或者a2=24a4=6q=1/2a1=48an=48*(1/2)^(n-1)数列{an}单调递增q>
由a1+a2=a1(1+q)=3①,a2+a3=a1q(1+q)=6②,②÷①得:q=2,把q=2代入①得到a1=1,则a7=26=64.故答案为:64
由4a1,2a2,a3成等差数列,得到4a2=4a1+a3,又a1=3,设公比为q,可化为:12q=12+3q2,即(q-2)2=0,解得:q=2,所以an=3×2n-1,则a3+a4+a5=12+2
An=3乘以2的n-1次方
设等比数列{an}的公比为q,由已知得a1+a1*q=3,a1*q^2+a1*q^3=12,解得a1=1,q=2.所以a1+a2+a3+……+an=1+2+2^2+2^3+……+2^(n-1)=(1-
因为an=2^n,所以log21/an(2为角标)=-n所以bn=2^n-nSn=2-1+2^2-2+2^3-3+...+2^n-n=(2+2^2+2^3+...+2^n)-(1+2+3+...+n)
lim(a1+a2+a3+...+an)=1/2说明等比数列为收敛数列,即公比q0Sn=a1(1-q^n)/(1-q)limSn=a1/(1-q)=1/2a1=1/2-1/2q因为0
an=2^n步骤:等比数列{an},=>an=a1*q^(n-1),(a1、q不为0)=>a2=a1q,a3=a1q^2,a4=a1q^3,2a1+a3=3a2=>2a1+a1q^2=3a1q,=>q
A1=B1,A3=B3,A7=B5a1+2d=b1*q^2a1+6d=b1*q^42d=b1*(q^2-1)6d=b1*(q^4-1)1/3=1/(q^2+1)q=±√2
A1+3A2+3²A3++3^(n-1)An+3^n*A(n+1)=(n+1)/3下减上:3^n*A(n+1)=1/3A(n+1)=3^(-n-1)则通项An=3^(-n)
1.设Qn=n/3Qn+1=(n+1)/3Qn+1-Qn=3^n*an+1=1/3an+1=1/3^(n+1)an=1/3^n2.bn=n*3^n
设公比为q,q≠1∵a1+a2+a3+a4+a5=3a1²+a2²+a3²+a4²+a5²=12(a1²,a2²,a3²
令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得
(1)a1+3a2+…+3^(n-2)an-1=(n-1)/3a1+3a2+…+3^(n-1)an=(n-1)/3+3^(n-1)an=n/3an=(1/3)^n.(2)bn=n/an=n3^nSn=
1、①A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,又A1+3A2+3^2*A3+...+3^(n-)*An-1=(n-1)/3,(比已知的式子最后少写一项,即有n-1项),两式相
a1+3a2+3²a3+…+3^(n-1)an=n/3a1+3a2+3²a3+…+3^(n-2)a(n-1)=(n-1)/3=n/3-1/3(n≥2)两式相减得:3^(n-1)an
∵等比数列{an}满足a2+a4=20,a3+a5=40,∴a3+a5=q(a2+a4)=20q=40,解得q=2.故选:C.
∵等比数列{an}满足a1+a2=3,a3+a4=6,∴a1(1+q)=3a1(1+q)•q2=6,解得q2=2,∴a7+a8=a1(1+q)•q6=3•23=24.故答案为:24.
设等比数列{an}的首项为a1,公比为q,由a2+a4=20,a3+a5=40,得a1q+a1q3=20a1q2+a1q4=40,解得a1=2q=2.∴a3=a1q2=2×22=8.故答案为:8.
根据题意得1*(1+2d)=(1+d)^2得到1+2d=1+2d+d^2最后d=0,题目要求是递增的即系d>0,矛盾吧,或许我算错了