设等差数列{an}的前n项和为Sn,4sn=an的平方=2an-3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:57:14
设等差数列{an}的前n项和为Sn,4sn=an的平方=2an-3
设等差数列 {an}的前n 项和为Sn,若S9>0 ,S10

你数列当中的第五个元素

设等差数列{an}的前n项和为Sn ,且S15>0,a8+a9

设第一项为:a1,公差为:d1、S15>0可得到a1>-7d2、a8+a9

设等差数列{an}的前n项和为Sn,a9=17,S3=9,求{an}通项公式及前n项和为Sn

等差数列{an}的首项为a1,公差为ds3=9a1+a2+a3=9a1+a1+d+a1+2d=93a1+3d=9a1+d=3a2=3a9=17a2+7d=177d=14d=2a1=1an=1+(n-1

设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0)

(1)S5=5a1+10d=5+10d=45,d=4,a3=1+2d=9.T3=b1+b2+b3=1+q+q^2=9-q,则q=-4或q=2.因为q>0,所以q=2.{an}的通项公式为:an=1+4

设等差数列{an}的前n项和为Sn,且S

因为a1=S1=(a1+12)2,所以 a1=1.设公差为d,则有a1+a2=2+d=S2=(2+d2)2.解得d=2或d=-2(舍).所以an=2n-1,Sn=n2.所以 bn=

设等差数列{an}的前n项和为Sn,若-a2013

S2013=2013(a1+a2013)/2因为a1+a2013>0所以S2013>0S2014=2014(a1+a2014)/2因为a1+a2014

设数列{an},{bn}都是等差数列,它们的前n项和分别为sn,Tn

答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1

设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,

(1)设等差数列{an}的公差为d,则Sn=na1+12n(n-1)d,∵S7=7,S15=75,∴7a1+21d=715a1+105d=75-----------------------------

设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列

证:第一种方法Sn+1=(n+1)[a1+a(n+1)]/2Sn=n(a1+an)/2Sn-1=(n-1)[a1+a(n-1)]/2a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-

设公差为d的等差数列{an}的前n项和为Sn,若a1=1,-2/17

n=9再问:为什么再答:等一下,我写一下过程再答:再答:再答:不懂追问再问:那你上面为什么说n=9?再答:说错了再答:n=9和10时结果一样再答:n=10时an=0再问:哦哦,我知道了

已知数列an的前n项和为sn=5/6n(n+3),1:求证an为等差数列 2:设bn=a3n+a

s(n+1)-sn=5/6(n+1)(n+4)-5/6n(n+3)=5/6(n²+5n+4-n²-4n-3)=5/6(n+1)=5/6n+5/6所以an是等差数列

设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式

因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(

设等差数列{an}的前n项和为Sn.已知a4=14 .S10=185.(1)求等差数列{an}的通项公式an.(2) 将

等差数列公式Sn=n(a1+an)/2或Sn=a1*n+n(n-1)d/2注:an=a1+(n-1)d185=a1*10+10*(10-1)d/214=a1+(10-1)d解得a1=5d=3an=5+

设等差数列{an}的前n项和为Sn,已知S12>0,S13

设公差为dS12=(a3+a10)*6=(2a3+7d)*6=(24+7d)*6>0S13=a7*13=(a3+4d)*13=(12+4d)*130且12+4d

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

设等差数列{an}的前n项和为Sn,且S5=-5,S10=15,求数列{Sn/n}的前n项和Tn

S5=5a3所以a3=-1S10-S5=a6+...+a10=a1+...+a5+5乘以5dd=1所以a1=负3an=n-4Sn=0.5n^2-3.5nSn/n=0.5n-3.5Tn=n(n-13)/

设等差数列{an}的前n项和为Sn,且a4-a2=8,S10=190,(1)求等差数列{an}的通项公式an

/>由等差数列公式可得:a4-a2=2d=8------------d=4S10=10a1+[10x(10-1)]x4/2=190------------a1=1故等差数列通项公式为:an=a1+(n

设等差数列(An)的前n项和为Sn,以知A4=14.S10=185,求等差数列(An)的通项An

假设公差为K由题可知Sn=nA1+n(n-1)k/2A4=A1+3K=14S10=10A1+45K=185K=3;A1=5An=5+3(n-1)=3n+2

一道关于等差数列的题设Sn为等差数列{An}的前n项和 求证:数列{n分之Sn}是等差数列

Sn=n(A1+An)/2设Bn=Sn/n=(A1+An)/2Bn-B(n-1)=(A1+An)/2-[A1+A(n-1)]/2=[An-A(n-1)]/2=d/2=常数∴{Sn/n}是等差数列