设等差数列an的公差d=1 2,an=3 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:15:29
设公差为d则有(1+d)*(1+13d)=(1+4d)(1+4d)推出d=2;所以an=1+2(n-1);Sn=n*n
依题意可得:a(n)=a(1)+2(n-1)S(n)=na(1)+n(n-1)则lim[a(n)^2-n^2]/S(n),n→∞=lim[a(1)^2+(5n-4)(3n-4)]/[n(a(1)+n-
(Ⅰ)由a1=1,S2•S3=36得,(a1+a2)(a1+a2+a3)=36,即(2+d)(3+3d)=36,化为d2+3d-10=0,解得d=2或-5,又公差d>0,则d=2,所以Sn=na1+n
还说明sn=n(a1+an)/2=0sn是关于n的没有常数项的一元二次函数,现在s(0)=s(n),可得对称轴为n/2如果n/2是整数,即n为偶数,最大值在n/2取到;如果n为奇数,在(n+1)/2o
a1^2=a11^2,∴a1=-a11a1=-(a1+10d)2a1=-10da1=-5dan=a1+(n-1)d=-5d+(n-1)d=(n-6)d∵d0,a6=0,a7
n=1a1=-1n>=2an=Sn-S(n-1)=-n^2+(n^2-2n+1)=1-2nsoan=1-2n=-1-2(n-1)soan=1-2nd=-2
当n=1时,a1=S1=-1.当n≥2时,an=Sn-Sn-1=-n2-[-(n-1)2]=1-2n,当n=1时也成立.∴d=-2.故选C.
设等差数列的公差为d,则a3=a5-2d=6-2d,an1=a5+(n1-5)d=6+(n1-5)d.∵a3,a5,an1成等比数列,∴a52=a3an1化简即(6n1-42)d-2(n1-5)d2=
a2+a4=2*a3=8a3=4,a4=3因此a1=6,d=-1通项为an=6-(n-1)=7-n
(1)由等差数列的通项公式及求和公式可得a1+2d+a1+4d=220a1+20×19d2=150∴d=1,a1=-2(2)∵bn=2an-2an+1=21-n=(12)n-1∴bnbn-1=12∴数
S2-S1=(an+1-a1)+(an+2-a2)+...+(a2n-an)=nd*n=d*n^2S3-S2=(a2n+1-a1)+(a2n+2-a2)+...+(a3n-a2n)=nd*n=d*n^
设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等比数列.a1*a4=a2^2a1*(a1+3d)=(a1+d)^2a1=d或d=0(舍去)an=d*nsn
n=9再问:为什么再答:等一下,我写一下过程再答:再答:再答:不懂追问再问:那你上面为什么说n=9?再答:说错了再答:n=9和10时结果一样再答:n=10时an=0再问:哦哦,我知道了
因为{An}是等差数列,所以A2+A8=A4+A6=10,A4*A6=24,所以可将A4、A6看作方程x^2-24x+10=0的两个根,因为d
很简单的.A1+2D=12A1=12-2DS12=(A1+A12)*D/2大于0所以A1+A1+11D大于0S13小于0所以A1+A1+12D小于024-4D+11D=24+7D大于024-4D+12
S3=S12∴S12-S3=0∴a4+a5+.+a12=0∴(a4+a12)*9/2=0∴a4+a12=0∴a8+a8=a4+a12=0∴a8=0∵d
5或6是对的,a6=0,S5=S6,a1^2=a11^2a11^2-a1^2=0(a11+a1)(a11-a1)=0(2a1+10d)*10d=0d
再问:太给力了,你的回答完美解决了我的问题!