设离散型随机变量x的分布函数为F(x)= ,求x的密度函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:07:07
1.F(0+)=2A+B=0,F(+∞)=2A=1故:A=1/2,B=-12.P(0
X=50即为此人坐了9:10分第二班车,概率即为1/6(第一班车在8:10到达的概率)乘以1/6(第二班车在9:10到得概率),其他的根据时间也可求得
P{X≠1}=1-P{X=1}=1-(F(1+0)-F(1-0))=1-(0.8-0.4)=0.6P{X再问:竖线表示的是什么意思?为什么要除?再答:没学过条件概率么?再问:哦!谢谢!
按照定义来看,分布函数F(x)=P{X<x},0-1分布的话,就是取0的概率为1-p,取1概率为p,那么当x≤0时,显然F(x)=P{X<x}=0,当0<x≤1时,F(x)=P{X<x}=p,这是因为
因为不能保证X(k-1)
很明显是0啊再问:可是答案是2/3。。。再答:得敢于怀疑答案!连很多大学使用的某某出版社的《概率论与数理统计》,好像是第二章第一个例题,都犯了类似的错误,把F(x)和f(x)的表达式弄错了。至少我坚持
P(X=-2)=0.1;P(X=0)=0.3;P(X=1)=0.4;P(X=3)=0.2;E(X)=-2*0.1+0*0.3+1*0.4+3*0.2=0.8;E(1-2X)=1-2E(X)=1-1.6
X的概率分布:P(X=0)=0.5P(X=1)=0.3P(X=3)=0.2
0.30.5
F(の)-F(の-0)F(の-0)代表在该点的左极限再问:怎么算的啊?再答:这个貌似是定义呢。书上绝对有的。要是你的书不好的话,那就看看考研复习全书吧,那上面有。你自己可以引申啊。在一个区间内,【a.
P(X=-1)=a;P(X=2)=1-a;已知P(X=2)=1/3;所以a=2/3
0再问:怎么得出的呢?再答:F(b)-F(a)=P(a
由于概率函数连续,所以Asin(π/2)=1,即A=1对F(X)求导得密度函数f(x)=cosx,0≤x≤π/2,其他为0所以E(X)=∫(0,π/2)xcosxdx=(π/2)-1
E(x)*E(Y^2)=E(x)*((E(Y))^2+D(y))再问:能不能详细点呀再答:你前面都做出来啦?而E(xy^2)=e(x)*e(y^2),求出e(x)和E(y^2)啊再问:知道啦,谢谢啦,
连续变量.分布函数是连续的.在1和-1处连续.得到a-b*π/2=0和a+bπ/2=1即可解出a.
需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范
概率密度f(x)=F'(x).故:|x|
第二种方法是,先算密度函数,就是对分布函数求导,见图片再问:f(x)已经是F(x)的导数了为什么还要求导呢?没明白再答:题目中给出的是分布函数F(x),没有给出密度函数f(x)啊