设矩阵C=(cij)m×n,矩阵A与B满足A·C=C·B,则A与B分别是什么矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:38:20
因为C=AB是m*m阶矩阵,又因为r(A)≤n,同理r(B)≤n,由公式r(AB)≤min[r(A),r(B)]得r(AB)≤n,而m﹥n,所以|AB|=0,所以C=AB不可逆.“不可逆”等价于“方阵
我刚刚当面点拨了你,你可以关闭问题了再问:我们在一起吧再答:你给我滚粗
CB^n=ACB^(n-1)=...=A^n*B所以任何多项式F有CF(B)=F(A)C所以任何R事B的特征值X属于B的R-根子空间,则存在n有(R-B)^nX=0则(R-A)^nCX=C(R-B)^
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)
行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|
C=AB是m*m阶矩阵,由于r(A)≤n,r(B)≤n,利用公式:r(AB)≤min{r(A),r(B)}得r(AB)≤n,而m﹥n,所以|AB|=0,即得C=AB不可逆再问:请问m﹥n,所以|AB|
任何一个可逆阵,可以写成若干个初等阵的积左(右)乘一个初等阵,相当于做一次初等行(列)变换所以一个可逆阵乘一个阵,相当于对矩阵做初等变换而初等变换不改变矩阵的秩所以命题成立
是acb吧~~矩阵之间相乘应该是前一个矩阵的列数与后一个矩阵的行数相等.那么,要使acb有意义,就需要保证c是一个n*s的矩阵.
题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.
classMatrix{public:Matrix(int_m,int_n,int*coef){m=_m;n=_n;pCoef=newint[m*n];for(inti=0;ifor(intj=0;j
因为AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解又因为B≠C所以B-C≠0所以Ax=0有非零解所以r(A)
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)
把C看做X,则A=ABX,有解的充分必要条件是r(AB)=r(A).当r(AB)=r(A)
这个问题,A和B是对称的(因为可以通过有限次的初等列变换将A和B调换位置,而并不对所研究的问题:C的秩带来影响),所以我只讨论问题的一个方面.因为通过对C的初等行变换化为行阶梯形式,非零行的第一个元素
利用|xE_m-AB|=|E_n,0\\0,xE-AB|=|E,B\\0,xE-AB|=|E,B\\A,xE_m|=|E-X^{-1}BA,0\\0,xE|=λ^(m-n)|λE(n阶)-BA|可以证
若η是齐次线性方程组Bx=0的解则Bη=0所以Cη=ABη=A0=0所以η也是齐次线性方程组Cx=0的解.反之,若η是Cx=0的解则有(AB)η=0所以A(Bη)=0由于r(A)=n,所以Ax=0只有
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一