设矩阵A存在可逆矩阵P,求出P及相应的对角矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:26:31
S^-1AS=C=diag(a1*I1,a2*I2,...,ar*Ir)分为r块,每块特征值相同,Ii都是单位阵SCS^-1B=AB=BA=BSCS^-1,左乘S^-1,右乘S,得CS^-1BS=S^
必须单位化!因为正交矩阵P是由A的特征向量构成的而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.所以必须单位化.不对.单位化后得到的P才是正交矩阵.PS.用
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
充分性:因为P、Q可逆,所以P,Q可以分解成若干个基本初等矩阵的积,所以A~B必要性:因为A~B,所以A经过若干次初等行列变换后成为B,即PAQ=B,(P、Q可逆)
做奇异值分解A=UΣV^T,然后取P=UV^T,S=VΣV^T即可
对A做奇异值分解A=USV^T,那么P=UV^T,S=VSV^T即为所求
对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且
证明:(P^-1AP)^2=(P^-1AP)(P^-1AP)=P^-1A(PP^-1)AP=P^-1A^2P再问:请问没有具体的解题步骤吗?再答:步骤已经给了呀
这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··
R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),
任何矩阵可以经初等变换化成这个样子,一般叫等价标准型再问:我是想知道那个pq是什么东东。再答:P就是初等矩阵的乘积,左边的,Q是右边的初等矩阵乘积再问:我晕,我不是在等你说这两句话。。。书上比你说的还
设B=P‘AP那么B‘=(P‘AP)‘=(AP)‘P=P‘A‘P因为A‘=A,所以B‘=P‘AP=B,所以P‘AP也是对称矩阵
存在可逆矩阵P和Q,使得PAQ=B,这其实就是通过初等变换实现的,P表示行变换,Q表示列列变换.存在可逆矩阵P使P^-1AP=B,这说明A与B相似,但不是随便两个矩阵都相似的
存在可逆矩阵P.Q使PAQ=B那么P,Q是初等矩阵吗?P,Q不一定是初等矩阵,但它们是初等矩阵的乘积.
首先必须求最小多项式.一般只要矩阵不特殊都是sI-A初等行列变换变成史密斯标准型,从而通过行列式因子或者直接算出来不变因子组,写成(x-si)^ni形式后,求初等因子组,初等因子组里相同因子方幂最大的
对任一n维非零列向量x,总有x'(A'A)x=(Ax)')(Ax)>=0,且x'x>0所以当a>0时,有x'Bx=ax'x+x'(A'A)x>0故B正定
由于P与Q可以写成有限个初等矩阵的乘积,例如设P=P1P2...Ps,Q=Q1Q2...Qt,所以B=PAQ=P1P2...PsAQ1Q2...Qt,而矩阵A左乘或者右乘初等矩阵相当于对矩阵A做了初等
1.可以.A有2个不同的特征值:7,-22.可以.A有3个不同的特征值:1,2,3再问:呵呵,详细的解答过程,谢谢!也就是说如何详细的算出特征值,特征向量,特征根等如何由这些推导出能与对角形矩阵相似,