设矩阵A与任意n阶方阵可交换,求A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:54:07
A与所有n阶方阵乘法可交换,我们只需取第一种初等矩阵Pi(k)(k不等于零和1)进行验证即可.PA的第i行的元素是A的第i行元素的k倍,AP的第i列的元素是A的第i列的元素的k倍,其它元素和A的元素相
n阶方阵A与B中有一个是非奇异的,不妨设A非奇异,则BA=A^(-1)ABA可见AB相似于BA
写起来很麻烦.这是个充要条件.设n阶方阵为A=(aij),设B=(bij)与A可交换,AB=BA,展开比较就行,会发现B的非主对角元全是0,主对角元是同样的数
真巧,我刚做过这道题\x0d\x0d请看图片:\x0d\x0d
证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.
A是标量矩阵(即一个常数再乘以单位阵)证明很简单,把A设出来,=(aij)然后分别让它和Eij可交换(Eij是ij位置上为1,其余全为0的矩阵)再两边作比较就可以了
只有两个都是对角矩阵的时候才能交换相乘.
不对.相似矩阵有相同的秩A的秩等于那个对角矩阵主对角线上非零元素的个数
不妨设B为可逆矩阵则由于AB=BA所以对于任意可逆阵B都有B-1AB=A即A的任意线性变换仍是A自己这样的矩阵只能是KI
再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气
证:设A=(aij)与任意的n阶矩阵可交换,则A必是n阶方阵.设Eij是第i行第j列位置为1,其余都是0的n阶方阵.则EijA=AEijEijA是第i行为aj1,aj2,...,ajn,其余行都是0的
证明:因为A,B均为n阶的对称矩阵,所以A'=A,B'=BAB为对称矩阵(AB)'=ABB'A'=ABBA=AB即A与B可交换
结合你刚才问的第1题考虑1000可得与所有二阶方阵可交换的矩阵为2阶数量矩阵,即形式为a00a的矩阵
当然不是可交换矩阵是一个很强的结论,一般来说都不可交换
ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question
设X=x11x12x21x22与已知矩阵A可交换.则AX=XA而AX=x21x22x11x12XA=x12x11x22x21所以x12=x21,x11=x22所以X=x11x12x12x11即与011
假设A不可逆,则:R(A)
为了证明这个命题,只需要证明A^k与B^m次方可以交换就可以了.因为A与B的任意多项式f(A)与f(B)相乘展开的每一项都是A^k*B^m的形式.由于A与B可交换,AB=BA,从而A^2*B=AAB=