设矩阵Am*n的秩为r,P为m阶可逆矩阵 则R(PA)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:07:35
题目不对吧,C中是说初等变换?C,D都对.再问:希望老师对每一选项都做一下点评,讲一下对或错的原因,谢谢!C选项的更正:C.A通过初等行变换,必可化为(Em,O)形式另外卷答案是C一项?再答:设A=0
BA=0转置一下A^TB^T=0因为r(A^T)=r(A)=m所以A^TX=0只有零解而B^T的列向量都是A^TX=0的解所以B^T=0所以B=0
依题意r(A)=r
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
高中数学还号大学数学已经都忘光了看来要专业人士解决了!自卑了
题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!
知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
因为R(A)=r,所以可以用一系列的行初等变换把A化为行阶梯形B,即存在可逆阵P,使PA=B;B中只有r行含非零元素,B可以写成r个矩阵的和B=C1+C2+…+Cr,其中Ck(1≤k≤r)的第k行是B
证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T
取可逆阵X和Y使得A=X*diag{I_R,0}*Y然后P取成X的前R列,Q取成Y的前R列就行了再问:大神,本人愚钝,表示完全看不懂啊,可以说的详细一点吗。。再答:如果第一行不懂就去看教材,这是基本结
D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.
请参看李永乐线性代数讲义关于经典等式r(AB)=0等价于r(a)+r(b)
(C)正确可逆矩阵(即非奇异矩阵)可表示成初等矩阵的乘积初等矩阵乘矩阵A相当对A进行初等变换而初等变换不改变矩阵的秩所以(C)正确.
因为r(A)=m所以对任一n维列向量b,线性方程组Ax=b总是有解特别对n维基本向量ε1,ε2,...,εn,Ax=εi有解xi令B=(x1,x2,...,xn)则AB=(Ax1,Ax2,...,Ax