设矩阵A A是其某一算子范数 a是任一非零的n维向量 对任意n维向量x,定义

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:19:44
设矩阵A A是其某一算子范数 a是任一非零的n维向量 对任意n维向量x,定义
设A是m*n矩阵,m>n,证明|AA^T|=0

想复杂了,用秩很简单的AA^T是m阶方阵而r(AA^T)

设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

矩阵 逆矩阵 AA*=A*A=|A|E |A|是行列式,怎么乘一个矩阵 单位矩阵E

|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|

设a是n维列向量,A为n阶正交矩阵,证明||Aa||=|a|

证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。

设A是N阶实矩阵,证明:若AA'=0则A=0.

A'是A的转置吧根据矩阵乘法定义,AA'的第i行第j列元素等于A的第i行和A'的第j列(也就是A的第j行的转置)的积.所以AA'第i个对角线上的元素是A的第i个行向量和自己转置后点乘的结果,也就是自己

设A是m*n实矩阵,证明:若AA^T=0,则A=0

因为AA'=0,所以任意m维列向量x,有x'AA'x=0,即(A’x)'A'x=0即||A‘x||=0即A’x=0由x的任意性A'=0,所以A=0再问:(A’x)'A'x=0和AA'=0有什么区别?再

线性代数问题:设A是n阶矩阵,满足AA'=|E|,|A|

AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|

设A是m*n实矩阵,证明:R(A'A)=R(AA')=R(A)

这类问题可用证明齐次线性方程组同解的方法显然,AX=0的解都是A'AX=0的解.反之,若X1是A'AX=0的解则A'AX1=0所以X1'A'AX1=0故(AX1)'(AX1)=0所以有AX1=0即A'

矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.

一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa

设A是n阶矩阵,n是奇数,满足AA^T=E,/A/=1,求/A-E/

A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0

图上矩阵条件数的定义中的矩阵范数是几范数?

1、2、无穷范数都行,问的cond是几范数就用A的几范数.

(急救啊)设A是n阶方阵,A*是其伴随矩阵

(1)要证这条,需要知道等式AA*=|A|E,其中|A|是A的行列式.如果R(A)=n,说明|A|不为零,则A*可逆,其逆为(1/|A|)A,所以R(A*)=n.(2)要证这条,需要知道A*的元素是A

设A是N阶实矩阵,证明:若AA‘=0则A=0

令B=A',则B'B=0所以对任意n维列向量x都有x'B'Bx=0即有(Bx)'Bx=0.所以Bx=0取ei=(0,...,0,1,0,...,0)',第i个分量等于其余为0的n维向量.i=1,2,.

矩阵范数与算子范数有什么区别?

对于矩阵而言,矩阵范数真包含算子范数,也就是说任何一种算子范数一定是矩阵范数,但是某些矩阵范数不能作为算子范数(比如Frobenius范数).

证明矩阵范数的等价性.设‖*‖p和‖*‖q为矩阵范数,存在两个正常数使得 c1‖A‖p

在|*|_p的单位球S^(n*n-1)上定义函数f:S^(n*n-1)-->R^+,f(s)=|s|_q/|s|_p=|s|_q因为在|*|_p的S^(n*n-1)上两个范数都>0,所以定义是成立的,

下图中A为n阶非奇异矩阵,U为n阶酉矩阵,证明图中的结论 其中||.||F是矩阵F范数

提示:||A||_F^2=trace(A^H*A)再问:太深奥了能详细点吗再答:1.trace(X)表示方阵X对角元的和,如果不知道的话有必要重新学线性代数2.直接把A^H*A乘出来,看一下trace

如何证明矩阵a的1范数是列元素和的最大值

设A=(aij)x=(xi)|x|=Σ|xi|=1|A|=max{|Ax|,|x|=1}=max{Σ(i)|Σ(j)|aijxj||

矩阵论中向量范数、矩阵范数、算子范数的联系和区别?范数到底有何作用呢?求直白易懂回答~

直白的说:向量的一种范数就理解成在某种度量下的长度,比如欧式空间,二范数:||x||_2=sqrt(sum(x_i^2)). 矩阵范数,通常是把矩阵拉长成一列,做向量范数.e.g矩阵的F范数