设矩阵,求其列向量组的一个极大线性无关组,并把其余向量用极大线性无关组表出.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:01:12
设矩阵,求其列向量组的一个极大线性无关组,并把其余向量用极大线性无关组表出.
关于向量组的秩设矩阵A的秩为r,任取A的列向量组的一个极大无关组a1,a2.ar,设B=(a1,a2.ar),在B中任取

因为由a1,a2.ar是极大无关组可知R(B)=r,于是知道B一定有至少一个r阶子式不为零.在行向量中如果任取r个,而不是取线性无关的r个,是完全可以得到0子式的.举个例子吧,考虑3个4维列向量:a1

求向量组的秩和一个极大无关组

(a1,a2,a3,a4,a5)=13213-1101-111102-13120r1+r2,r3+r2,r4-r204222-1101-10211102111r1-2r3,r4-r300000-110

向量的极大无关组这道题是求一个向量组的所有极大无关组,化简成阶梯型矩阵后变成如下:列向量组{a1,a2,a3,a4,a5

这道题看你的理解了,可以有多种办法第一种:像你说的那种,用行式列的值来算,如果为零就不是了第二种:三个列向量构成的一个矩阵,求出秩=3的组求秩的方法很多:1.可以用最基础的行列式的方法,实际,这正好是

为什么非零行的首非零元所在的列对应的向量即构成一个极大无关组?

首先显然有:非零行的首非零元所在的列及所在的行构成的r阶子式不等于0所以非零行的首非零元所在的列及所在的行构成的列向量线性无关添加若干个分量仍线性无关(定理)所以非零行的首非零元所在的列线性无关其次,

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组

证:设k1Aa1+k2Aa2+...+knAan=0则A(k1a1+k2a2+...+knan)=0因为A可逆,等式两边左乘A^-1得--这一步是关键k1a1+k2a2+...+knan=0又由已知a

最大线性无关组,(2)梯矩阵中非零行的首非零元所在列对应的向量即为一个极大无关组 那这个题是怎么回事呀

1000,0100,-53-20,0010你这是转置后的吧转置回来:10-50013000-210000嗯,a1,a2,a4可以当作极大无关组,你就想像3,4列交换了一下其好处是不出现分数,a3=-5

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

利用初等行变换求下列矩阵的列向量组的一个极大线性无关组

化行阶梯矩阵并没什么高招记住一点:从左到右一列一列处理r3-2r1,r1-2r2,r4-3r20-33-1-611-2140-44-4003-34-3第1列就处理好了那么,第1列只有1个非零的数1,之

设a1,a2,...,an是n维列向量空间R^n的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1,Aa2..

在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基

矩阵的秩等于矩阵的极大无关组中向量的个数吗?

等于矩阵行向量和列向量的秩再答:这三者是相等的再问:真的吗!谢谢了

求出矩阵的秩之后 如何再得出行向量组的一个极大无关组?

这个,稍微用肉眼看一下就行了.比如你这个矩阵的秩为2.那你从中找出满秩的2X2小矩阵.对应的行向量组必是一个极大无关组.其实你在求秩的过程中已经能够找到2X2小矩阵了,要不然你怎么知道它的秩为2

判断下列向量是否线性相关,并求其一个极大无关组

这个向量组线性无关极大无关组即其自身

一个线性代数的问题为什么这种方法求极大线性无关组要把向量组作为列向量构成矩阵来进行初等行变换?直接看成行向量构成矩阵不行

因为我们要说明这向量组线性相关或无关,按定义需设k1a1+k2a2+k3a3+k4a4=0,求关于k1,k2,k3,k4的方程组,看它们是否全为零,写成方程组形式再看方程组的系数矩阵会发现系数矩阵的列

关于矩阵的秩,极大无关组,还有行向量组和列向量组几个很基本的问题

问题好多啊,看的出是个好学的孩子线性代数当时学得还不错,好长时间不看了,说的不一定正确,选择性接受1.矩阵的秩,我们定义为:对于一个mxn的矩阵,如果可以找到一个r(r再问:第五个忘了写转置的符号了,

什么叫则非零行的首非零元所在列对应的向量即构成一个极大无关组

比如(a1,a2,a3,a4,a5)-->用初等行变换化为12345006780000900000非零行共3行,首非零元分别是1,6,9分别位于第1,3,5列则a1,a3,a5构成向量组的一个极大无关

问一个调用MATLAB矩阵列向量的问题

还是没有听懂.尤其是"我想用一行8个数,逐一除以每一列并取整,再形成一个矩阵;"你还是弄一个5行3列的矩阵的实例然后你说一下,再问:(a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q

求下列矩阵的秩及行向量组的一个极大线性无关组:

因为题目要求行向量组的一个极大无关组,需将矩阵转置再用初等行变换(1)A^T=3111-1302-42-14r1-3r2,r4-2r204-81-1302-401-2r1-4r4,r3-2r40001

求列向量组一个极大线性无关组,并把其余向量用极大线性无关组表出.矩阵如图.

A=(α1,α2,α3,α4,α5)=2-1-11211-2144-62-2436-979r4-r1-r2,r3-2r1,r1-2r20-33-1-611-2140-44-4006-653r4+2r1