设灯管使用寿命X服从指数分布,且其

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:43:38
设灯管使用寿命X服从指数分布,且其
设电子元件的使用寿命服从参数为1/2000的指数分布,求一个原件在使用了2500小时后,还能继续使用的概率

分布函数F(X)=1-E^(-1000X)概率密度F(x)的1000E^(-1000X的),x>0时F(x)的=2000E^(-2000X),x>0时函数f(x)F(X)=1-E^(-1000X),x

设X服从参数设X服从参数为λ=1的指数分布,求Y=X^2的概率密度.

X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

设指数变量x服从指数分布,且p{x>1000}=0.01,求概率p{x

参数为k的指数分布的分布函数为:F(x)=1-e^(-kx)x>0F(x)=0其它.由已知,p(x>1000)=0.01,得:p(X

设随机变量X服从参数为1的指数分布,则E(X+e^-2X)=?

E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度

设随机变量X服从参数λ 为的指数分布,则概率 P(X>EX)?

X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X

设随机变量X服从参数为λ的指数分布,则P{X>DX}

由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.

概率指数分布家设随机变量X服从参数为λ的指数分布,且X落入区间(1,2)内的概率达到最大,则λ=?

X落入区间(1,2)内的概率P=积分(1-->2)λe^(-λx)dx=e^(-λ)-e^(-2λ)概率达到最大-->dP/dλ=0-->λ=ln2

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

设随机变量X服从指数分布,如果该分布80%的分位点等于2,求其密度函数.

 最后结果算出来是再问:不懂啊。。。。您看哦,他让求指数分布的密度函数,就是说求他的参数拉姆达,怎么求呢。。。辛苦大神求讲解。。。再答:我认为分布80%的分位点等于2,可得到上述的方程,最后

设随机变量X服从指数分布e(2),则EX²=

E(x)=1/2D(x)=1/4E(X^2)=D(x)+E^2(x)=1/2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!

设随机变量X服从指数分布,E(x)=1000,则p(1000

X~E(n)E(X)=1000=1/nD(X)=1/n^2=1000^2p(1000

设随机变量X服从参数为3的指数分布,试求:

(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y

设随机变量X,Y独立,且均服从参数为λ的指数分布,求:X/(X+Y)的分布

设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.

某种装置中有两个相互独立工作的电子元件,其中一个的电子元件使用寿命X服从参数1/1000指数分布,另一个电子元件使用寿命

分布函数为F(X)=1-e^(-1000x)概率密度f(x)=1000e^(-1000x),x>0f(x)=2000e^(-2000x),x>0f(x)就F(X)=1-e^(-1000x),x>0F(

某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X服从参数1/1000的指数分布,另...

(1)1/2000000乘以(e的-32000次方)(2)E(x)=1000E(y)=2000(3)(1-e的-1.2次幂)(1-e的-0.6次幂)