设椭圆x^2 25 y^2 16=1的两焦点为F1,F2,M为椭圆上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:57:59
设椭圆x^2 25 y^2 16=1的两焦点为F1,F2,M为椭圆上一点
已知椭圆C语双曲线3x的平方-5y的平方=15共焦点 且长轴长为6 设直线y=x+2的椭圆于A、B两点.(1)求椭圆..

双曲线x²/5-y²/3=1中,c=2√2,又椭圆的2a=3,即a=3,所以椭圆的b²=a²-c²=1,椭圆:x²/9-y²=1.

设椭圆C:x^2/a^2+y^2/b^2=1恒过定点(1,2),则椭圆的中心到准线的距离的最小值

一楼的童鞋,椭圆准线公式是x=a^2/c注意,是中心,不是焦点!最后答案应该是2+√5

设F1,F2是椭圆x^2/25+y^2/16=1的两个焦点,点P是椭圆上任意一点.

1、a=5,由椭圆定义PF1+PF2=2a=10平方PF1²+PF2²=100-2PF1PF2c²=a²-b²=25-16=9故c=3余弦定理(2c)

设F1,F2分别是椭圆x^2+y^2/b^2=1(0

设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0

设p是椭圆x²/9+y²/4=1上任意一点,F1,F2是椭圆的两个焦点,则cos角F1PF2的最小值

记m=|PF1|,n=|PF2|,那么|PF1|+|FP2|=2a=6,也就是m+n=6,m,n>0另外|F1F2|=2c=2√5由余弦定理,cos∠F1PF2=(m²+n²-|F

设P是椭圆(x²/4)+y²=1上的一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值

用均值不等式只能求最大值,不能求最小值椭圆(x²/4)+y²=1a²=4,a=2,c²=a²-b²=3,c=√3根据椭圆定义,P在椭圆上,则

设P是椭圆x^2/25+y^2/16=1上的点,若F1,F2是椭圆的两个焦点,则绝对值PF1+绝对值

对于椭圆x²/25+y²/16=1,其中a=5,b=4|PF1|+|PF2|=2a=10

设椭圆(x^2)/25+(y^2)/16=1上一点P到左准线的距离为10,F是该椭圆的左焦点,

a²=25b²=16c²=25-16=9左准线x=-a²/c=-25/3所以P横坐标=-25/3+10=5/3所以P(5/3,±8√2/3)F(-3,0)所以O

设椭圆(x^2)/25+(y^2)/16=1上一点P到左准线的距离为10,F是该椭圆的右焦点,

设左焦点为F1,则OM是△PF1F的中位线,│OM│=1/2│PF1│.由第二定义│PF1│/d=e,│PF1│=ed=3/5×10=6.│向量OM│=1/2│PF1│=1/2×6=3.

已知椭圆C:x^2/4+y^2=1,设直线l于椭圆相交于不同的两点A、B.

点A在椭圆C上==>a=2或-2.设B(2cosW,sinW)==>AB中点P(-a/2+cosW,sinW/2).PQ垂直AB,则斜率互为负倒数.==>(sinW/2-y0)/(-a/2+cosW)

已知椭圆Cx^2+4y^2=1,设A(3,0),M,N是椭圆C上关于x轴对称的任意两点

证明:设N(m,n),则M(m,-n),又A(3,0)∴AN:y=n/(m-3)x-3n/(m-3)①又x2+4y2=1②由①和②可得:E(12n2-√[144n4+(m2-6m+9+4n2)(m-3

设F1,F2分别是椭圆x^2/5+y^2/4=1的左右焦点

1)设P点坐标为(√5sinθ,2cosθ)F1(-1,0)F2(1,0)PF1=(-1-√5sinθ,-2cosθ)PF2=(1-√5sinθ,-2cosθ)PF1*PF2=5sinθ^2-1+4c

设P是椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆两个焦点,求:(1)|PF1||P

椭圆上的点到两焦点的距离和是定值嘛,所以第一问可以用基本不等式算出.第二个就要设点,设P坐标是(a,b),两向量分别是(a-√3,b)和(a+√3,b),点乘就等于aˆ2-3+bˆ

设椭圆的方程为(x²/a²)+(y²/b²)=1(a>b>0),椭圆与y轴正半轴

这题简单由题意得2a+2c=4+2√3,所以,a+c=2+√3因为∠F1BF2=2π/3,所以c=a*cosπ/6=(√3/2)*a代入上式,得a=2,c=√3,所以b^2=a^2-c^2=2-3=1

设M是椭圆x^2/64 y^2/48=1上的一点,f1、f2分别是椭圆的左右焦点.

M的坐标是(8,0)椭圆x^2/64+y^2/48=1;∴a=8;c=4;2c=8;2a=16;MF1+MF2=2a=16;∵MF1=3MF2;∴MF1=12,MF2=4;∵MF1-MF2=8=2c说

设F1,F2,是椭圆x^2/36+y^2/24=1的两个焦点,P为椭圆上的一点,已知角F1PF2=60°,

a=6,c=2√3设|PF1|=m,|PF2|=nm+n=2a=12两边平方144=m²+n²+2mn①(2c)²=m²+n²-2mncos60°48

P(x,y)是椭圆x∧2/16+y∧2/9=1上一点,求y/x的取值范围?是否可以设y/x=t,然后和椭圆的方程联立求范

当然可以,除此之外还有两种简单方法.直观判断  连接OP,看OP的斜率  一看就知道是正无穷到负无穷三角代换 x=4cosa y=3sina