设有线性方程组(1)AX=O(2)ATAX=O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:14:01
A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故Ax=0的解是A'AX=0的解.(2)设X2是A'AX
1.特征值0所对应的特征向量是α1=(-12-1)^Tα2=(0-11)^T因为Aα1=0=0*α1,α2也一样同时矩阵A各行元素之和均为3,所以A(1,1,1)^T=3*(1,1,1)^T另一个特征
选B.因为A中的三个向量a1-2a2+a3,-2a1+a2+a3,a1+a2-2a3线性相关.(这个相关性证明可由行列式1-21-21111-2的值为0得出.)
n-r个向量,当r=n时方程组只有零解
知识点:齐次线性方程组AX=0的基础解系含n-R(A)个解向量1.由已知,AX=0的基础解系可由BX=0的基础解系线性表示所以n-R(A)=R(B)正确.2.显然错误:秩的大小不能决定解,只能决定线性
∵η1,η2是非齐次线性方程组AX=b的解∴Aη1=bAη2=b∴Aη1-Aη2=b-b=0A(η1-η2)=0∴X=η1-η2
你的也是对的,有一个非齐次通解就可以
因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是
1.D2.(0,1/2,1,3/2)^t+k(1,1,1,1)^t3.B4.C5.B
齐次线性方程组的解是线性空间,设Ax=0,BX=0的解空间的维数分别是a,b因为线性空间的唯一区别在于维数,所以a
(3)正确同解方程组的基础解系所含向量的个数相同所以有n-r(A)=n-r(B)即有r(A)=r(B)(1)正确此时n-r(A)=r(B)再问:能把不对的选项也说明一下吗?再答:那显然不对秩的大小并不
c零向量肯定是一个解.如果AX=O有非0解S的话,设AX=B的解为C,那么A(C+S)=AC+AS=B+0=B,所以C+S也是一个解,而且与C不同,这样的话AX=B的解就不是唯一的了.所以AX=0只有
a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<
a=3时有解;2) 1 2 -3 1 &n
111+λλ0λ-λ3-λ00-λ×λ-3λ-λ×λ-2λ+3上面是增广矩阵的化简形式.如果λ=0,则矩阵为:111000030003无解.故无解时,λ=0如λ不等于0且λ不等于-3时,有唯一解.如果
Aa=B,Ab=0(a:alpha;b:beta)=>A(a/2)=B/2,A(b/2)=0两式相加=>A(a/2+b/2)=B/2所以a/2+b/2是AX=B/2的解
(1)如果Aa=0,那么A^TAa=A^T(Aa)=A^T*0=0,这说明AX=0的任一解a都满足A^TAX=0;(2)如果A^TAa=0,左乘A得AA^TAa=A0=0,即(AA^T)Aa=0,根据
四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=
R(A)=3说明AX=0的基础解系含4-3=1个解向量A(a1-(a2+a3)/2)=Aa1-(Aa2+Aa3)/2=b-(b+b)/2=0所以a1-(a2+a3)/2是AX=0的解所以它就是基础解系