设曲面∑为球面x^2 y^2 z^2=R^2的外侧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:51:23
设曲面∑为球面x^2 y^2 z^2=R^2的外侧
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2

为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部

利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

计算曲面积分 ∫∫(x^2+y^2+z^2)ds,其中 ∑是球面x^2+y^2+z^2=a^2(a>0)

不用那么麻烦把曲面公式代入被积函数中∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4再问:但答案是8πa^4再答:答案是4πa^4,我用不同的方法算了一遍,请看:

计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分

再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

设曲面∑:x^2/a^2+y^2/b^2+z^2/c^2=1上的点(x,y,z)处的切平面为π,计算曲面积分∫∫∑1/λ

对曲面在第一象限内的部分,设x=a*r*costy=b*r*sint则z=c*sqrt(1-r^2)代入计算得到8*pi/3*abc*(1/a^2+1/b^2+1/c^2)再问:麻烦您写一下具体步骤呗

利用高斯公式求曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2

原式=∫∫∫(αP/αx+αQ/αy+αR/αz)dxdydz=∫∫∫(x²+y²+z²)dxdydz=∫dθ∫sinφdφ∫r^4dr(你错在这儿,第二个积分限是)=(

用高斯公式计算曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2

令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α

利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)

伙计这个(x-a)^2+(y-b)^2+(z-c)^2是球面吗?不是的,它是屁.令(x-a)^2+(y-b)^2+(z-c)^2=R^2才是,首先要加一个平面z=c取下侧面,才能用高斯公式原式=∫∫∫

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧

在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.∵∫∫x³dydz+y³dzdx+z³dxdy=0(∵z=0,∴dz=

关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=

嘿嘿,这里就是考你会不会区别面积分和重积分的地方了.面积分的被积函数是建构在曲面方程上的,x²+y²+z²=a²,只包含方程的部分积分域:{x,y,z|Σ:x&

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds

球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是

设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=

面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值

不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x+y+z+1)ds的值 答案是4∏

根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π

曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面

楼上前一个积分算错了,这不是上半球面.我的答案:如有不懂,再问:您的问答我看懂了。不好意思,还有到类似的问题,不知道能否请您帮我解答下:曲面积分∫∫(y^2-x)dydz+(z^2-y)dzdx+(x