设曲线y=y(x)由方程y=xlny确定,求y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:48:37
设曲线y=y(x)由方程y=xlny确定,求y
高数 设函数y=y(x)由方程y+e^y^2-x=0确定,求曲线y=f(x)在点(1,0)处的切线方程

方程两边求导:y'+e^y^2*2y*y'-1=0,x=1,y=0,y'=1∴切线方程:y=x-1

考研题 设函数y=y(x)由参数方程x=t^2+2t y=ln(1+x)确定,则曲线y=y(x)在x=3处的法

首先你的题目应该有点错误,应该是y=ln(1+t)吧.先求y=y(x)在x=3处的导数:y'=dy/dx=(dy/dt)/(dx/dt)=[1/(1+t)]/(2t+2)=1/[2(1+t)^2],当

设函数y=y(x)是由方程cos(xy)=x+y所以确定的隐函数,求函数曲线y=y(x),过点(0,1)的切线方程

cos(xy)=x+y两边微分,得dx+dy-sin(xy)*(x*dy+y*dx)=0dx(1-ysin(xy))+dy(1-xsin(xy))=0dy/dx=(ysin(xy)-1)/(1-xsi

设函数y=y(x)是由方程cos(xy)=x+y所确定的隐函数,求函数的曲线y=y(X)过点(0,1)的切线方程

令F(x,y)=cos(xy)-x-yF'(x,y)x=-ysin(xy)-1对x求偏导F'(x,y)y=-xsin(xy)-1对y求偏导切线方程为:(x-0)/F'(x,y)=(y-1)/F'(x,

设函数y由方程ln y+x/y=0确定,求dy/dx

lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-

设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

由隐函数微分法可得:-sin(x+y)(1+y′)+y′=0-sin(x+y)+[1-sin(x+y)]y′=0∴y′=sin(x+y)/[1-sin(x+y)].

设y=y(x) 由方程ysinx=cos(x-y) 所确定,则y'(0)=

设y=y(x)由方程ysinx=cos(x-y)所确定,则y'(0)=x=0时cos(-y)=cosy=0,故y=π/2+2kπ,k∈ZF(x,y)=ysinx-cos(x-y)=0dy/dx=-(&

设y=y(x)由方程e^y-xy=0所确定,求y'(x)

这是一个复合函数求导,y=y(x)所以求e^y的导数首先对整体求导,再对y求导即为e^y*y'xy的导数为y+x*y'(根据求导规则)所以两边求导可得e^y*y'-y-x*y'=0

设y=y(x)由方程xy+lny=1确定,则曲线y=y(x)在x=1处的法线方程为?

y=2x-1xy+Iny=1两边对x求导的y+xy’+y‘/y=0,由x=1分别带入上述两个式子得y=1,y’=-1/2,所以切点为(1,1),切线斜率为-1/2,即法线斜率为2,法线方程为y-1=2

设y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0-sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0dy/dx=[sin(x+y)]/[1-sin(x+y)]

设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy

分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.

设函数y=y(x)由方程xy+e^y=1所确定,求y"(0)

xy+e^y=1e^y(0)=1y(0)=0xy'+y+e^yy'=00+y(0)+y'(0)=0y'(0)=0xy''+y'+y'+e^yy''+(y')^2e^y=00+2y'(0)+y''(0)

设函数y=y(x)由方程sin(x²y)+ln(2x-y)=0所确定,则曲线y=y(x)在点(0.-1)处的切

(0,-1)在曲线上,是切点对x求导cos(x²y)*(2xy+x²*y')+1/(2x-y)*(2-y')=0吧(0,-1)代入2-y'=0所以切线斜率k=y'=2所以是2x-y

设函数设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.

反函数是表达不出来的,只能用隐函数求导法.即求该点的两阶导数.

设y(x)由方程e^y-e^x=xy 所确定的隐函数 求y' y'(0)

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设函数y=y(x)由方程(x+y)^(1/x)=y所确定,则dy/dx=?

ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����

设函数y=y(x)由方程e^y+xy+e^x=0确定,求y''(0)

/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0  

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[