设方程z^x-y^z=0确定函数z=f{x,y}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:14:29
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
①求∂x/∂y:由x=x(y,z)代入方程F(x,y,z)=0,即F(x(y,z),y,z)=0,则把其看成关于未知数y,z的方程,则对其双边关于y求导,得F1'*∂
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求
对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)
两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz
dz=(бz/бx)dx+(бz/бy)dy由x²-z²+ln(y/z)=0求出бz/бx、бz/бy1、两边对x求偏导2x-2z(бz/бx)+(z/y){[0-y(бz/бx)
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
方程x^2-z^2+lny-lnz=0两端对x求导得2x-2zz'x-z'x/z=0z'x=2x/(2z+1/z)两端对y求导得-2zz'y+1/y-z'y/z=0z'y=1/[y(2z+1/z)]因
x^2+y^2+z^2+4z=02xdx+2ydy+2zdz+4dz=0(2z+4)dz-2xdx-2ydydz=(-2xdx-2ydy)/(2z+4)
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]
对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)
设:f1=偏f/偏(z/x),f2=偏f/偏(y/z),则由f(z/x,y/z)=0得:0=偏f/偏x=f1偏(z/x)/偏x+f2偏(y/z)/偏x=f1[-z/x²+(1/x)(偏z/偏
x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导的函数(əx/əy)*(əy/əz)*(əz/&
若z=f(x,y)由方程F(x,y,z)=0确定,则将F(x,y,z)=0两边对x,y求导(x,y视为独立变量,z视为x,y的函数)这个是没有问题的,但此处x,y为两个独立的变量;题1.设y=f(x,
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d