设方程z=f(t)dt确定函数z=z(x,y),其中f(t)连续,求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:14:52
设方程z=f(t)dt确定函数z=z(x,y),其中f(t)连续,求
设u=f(x,z)而z(x,y)是由方程z=x yP(z)所确定的函数,求du

dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz所以dz=[yP(z)dx+xP(z)dy]/[1-xyP'(z)]du=df(x,z)=f'x(x,z)dx+f'z(x,

设y=f(x)是由方程x-积分(上限为y+x,下限为1)e^(-t^2)dt=0所确定的隐函数,则d²y/dx

x-积分(上限为y+x,下限为1)e^(-t^2)dt=0的两边对x求导得:1-e^(-(y+x)^2)*(y'+1)=0y'=e^((y+x)^2)-1求导得:y'‘=e^((y+x)^2)*2(y

设y=f(x)是由方程x-积分(上限为y+x,下限为1)e^(-t^2)dt=0所确定的隐函数,则dy/dx且(x=0)

两边同时求导数得到1-e^[-(x+y)^2]*(1+y')=0此时把x=0带进去,这时候y=1所以1/e(1+y')=1所以y‘=e-1y的话,就是0-(1到y)的积分=0这时候因为结果=0,所以y

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设y=f(x)是由方程x-积分(上限为y+x,下限为1)e^(-t^2)dt=0所确定的隐函数,则dy/dx=具体怎么做

∵x-∫e^(-t²)dt=0==>1-(y'+1)e^(-(y+x)²)=0(等式两端求导)==>y'+1=e^(y+x)²==>y'=e^(y+x)²-1∴

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设z=z(x,y)由方程F(xy,z-2x)=0所确定的隐函数,求

令G(X,Y,Z)=F(xy,z-2x)GZ'=F'2GX'=yF'1-2F'2∂z/∂x=-GX'/GZ'=(2F'2-yF'1)/F'2Gy'=xF'1∂z/&

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

设z=(x,y)由方程z=f(x,y,z)所确定,其中f为可微的三元函数,求dz

z=f(x,y,z),两边求微分(f'x表示函数f对变量x的偏导数,y、z同义)dz=f'x*dx+f'y*dy+f'z*dz(1-f'z)dz=f'x*dx+f'y*dy∴dz=(f'x*dx+f'

设z=z(x,y)是由方程f(xz,y+z)=0所确定的隐函数,求dz.

df=f1*d(xz)+f2*d(y+z)=f1*(z*dx+x*dz)+f2*(dy+dz)=0dz=-(z*f1*dx+f2*dy)/(x*f1+f2)其中f1和f2分别为f这个二元函数对第一个和

设函数z=f(x,y)由方程y^3z^2-x^2+xyz-5=0所确定,求∂z/∂x和ͦ

y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y&#

设函数z=∫tf(x^2+y^2-t^2)dt,其中函数f(x)有连续的导数,求∂^2z/∂x&

z=∫[0---->√(x²+y²)]tf(x²+y²-t²)dt令x²+y²-t²=u²,两边微分得:tdt

设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p

想办法变换就行了,EASY再问:能详解一下吗?再答:上网没带笔,用画图工具算。如图,第一行是已知条件。第二行同时取负号,积分上下限交换第三行同时对上面式子求相应导数,注意与求解结果一致第四行继续对原来

设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,

f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+