设方程y=sin(x y),求y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:38:50
左右对x求导有y'/y=sec²(xy)(y+xy')整理有y'=y²/(cos(xy)-xy)所以dy=(y²/(cos(xy)-xy))dx
1)y|x=o当x=0时sin(0)-1/y-0=1得:y|x=0=-1(2)y'|x=osin(xy)-1/y-x=1两边对x求导:cos(xy)(y+xy')+y'/y^2-1=0当x=0时y=-
是把y看作关于x的函数.再问:不是很懂,给个步骤吧。谢谢。再答:1/y-x是(1/y)-x的意思,还是1/(y-x)?再问:1/(y-x)再答:把y看做x的复合函数,两边对x求导,得cos(xy)·(
这是一个复合函数求导,y=y(x)所以求e^y的导数首先对整体求导,再对y求导即为e^y*y'xy的导数为y+x*y'(根据求导规则)所以两边求导可得e^y*y'-y-x*y'=0
两边求导得:cos(xy)*(y+xy')+1+y'=0y'[xcos(xy)+1]=-ycos(xy)-1所以,y'=-[ycos(xy)+1]/[xcos(xy)+1]
再答:隐函数高阶求导。再答:
e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))
这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos
cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]
详细答案在下面.希望对你有所帮助!
xy+e^y=1e^y(0)=1y(0)=0xy'+y+e^yy'=00+y(0)+y'(0)=0y'(0)=0xy''+y'+y'+e^yy''+(y')^2e^y=00+2y'(0)+y''(0)
Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)
∵siny+e^x-xy^2=0,∴(dy/dx)cosy+e^x-[y^2+2xy(dy/dx)]=0,∴(cosy-2xy)(dy/dx)=y^2-e^x,∴dy/dx=(y^2-e^x)/(co
x=0时,代入方程得:1+1=y,得:y=2对x求导:(y+xy')e^xy-sin(xy)*(y+xy')=y'将x=0,y=2代入得:2=y'故dy(0)=2dx
(cos(x+y)-y)\(x-cos(x+y))
两边对x求导数,得y'*e^y+y+xy'=0,在原方程中令x=0可得y=1,因此,将x=0,y=1代入上式可得y'+1=0,即y'(0)=-1.再问:对x求导时y可以当成一个常数吗?为什么要用公式(
dy/dx=-fx/fy,你自己可以算吧
e^(x+y)+sin(xy)=1e^(x+y)*(1+y')+cos(xy)(y+xy')=0y'*[e*(x+y)+xcos(xy)]=-[ycos(xy)+e^(x+y)]y'=-[ycos(x
化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[