设数列{xn}有界,且limyn=0,n趋于正无穷,证明limxnyn=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:05:56
首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基
存在正常数M,使得一切xn满足|xn|
很简单1、证:充分性因为lim|Xn|=0,所以任给t>0,存在正整数N,对一切n>N有-tN都有│yn│N时总有│xnyn│
数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!
数列{Xn}有界是数列收敛的必要条件,数列{Xn}收敛是数列{Xn}有界的充分条件.
不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
当n趋于无穷大时yn为无穷小,xn为有界函数,有界函数乘以无穷小结果还是无穷小.所以xn.yn=o明白了吗?
用极限的定义,Xn有界,则存在M使得Xn的绝对值
数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!
f(1)=4f2=1f3=3f4=5f5=2那么:x0=5x1=f5=2x2=f2=1x3=f1=4x4=f4=5所以:数列以4为周期循环往复,2011除以4余3,所以x2011=x3=4希望你能明白
当n>=2时,0
由已知得数列{xn}是1,2,3,4,1,2,3,4,……∵2010÷4=502……2∴X1020=2
因为{xn}有界,则存在M>0,有|xn|0,存在N>0,当n>N,有|yn-0|0,当n>N,有|xn*yn-0|
f(1)=4f2=1f3=3f4=5f5=2那么:x0=5x1=f5=2x2=f2=1x3=f1=4x4=f4=5所以:数列以4为周期循环往复,2011除以4余3,所以x2011=x3=4
因为{Xn}有界,不妨设limXn在x趋于无穷大时,limXn小于等于M,然后有LimXnYn小于等于M*LimYn=0,所以有LimXnYn=0
因为数列{X}有界,所以设绝对值X