设数列{xn}有界,且limyn=0,n趋于正无穷,证明limxnyn=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:05:56
设数列{xn}有界,且limyn=0,n趋于正无穷,证明limxnyn=0
设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.

首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基

高数极限证明1.证明:limXn=0的充分必要条件是lim|Xn|=02.设数列{Xn}有界,limYn=0,用数列极限

很简单1、证:充分性因为lim|Xn|=0,所以任给t>0,存在正整数N,对一切n>N有-tN都有│yn│N时总有│xnyn│

设数列Xn有界,又limYn=0 证明limXnYn=0

数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!

数列{Xn}有界是数列收敛的什么条件,数列{Xn}收敛是数列{Xn}有界的什么条件?

数列{Xn}有界是数列收敛的必要条件,数列{Xn}收敛是数列{Xn}有界的充分条件.

设数列{Xn}、{Yn}、{Zn}满足Xn

不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.

设数列{Xn}有界,又lim Yn=0,证明:lim XnYn=0

用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|

设数列{Xn}有界且当n趋向于无穷大时,{Yn}极限为0,证明当n趋向于无穷大时Xn·Yn的极限为0

当n趋于无穷大时yn为无穷小,xn为有界函数,有界函数乘以无穷小结果还是无穷小.所以xn.yn=o明白了吗?

设数列{xn}有界,有lim(yn)=0,证明:lim[(xn)×(yn)]=0

用极限的定义,Xn有界,则存在M使得Xn的绝对值

设数列{Xn}有界,又limYn=0,证明:limXnYn=0

数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!

设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2011

f(1)=4f2=1f3=3f4=5f5=2那么:x0=5x1=f5=2x2=f2=1x3=f1=4x4=f4=5所以:数列以4为周期循环往复,2011除以4余3,所以x2011=x3=4希望你能明白

设数列{ Xn}满足0

当n>=2时,0

设函数f(x)定义如下表,数列{Xn}(n∈正整数)满足X1=1,且对于任意的正整数n,均有Xn+1=f(Xn),

由已知得数列{xn}是1,2,3,4,1,2,3,4,……∵2010÷4=502……2∴X1020=2

设数列Xn有界,lim(yn)=0,证明lim(xn*yn)=0

因为{xn}有界,则存在M>0,有|xn|0,存在N>0,当n>N,有|yn-0|0,当n>N,有|xn*yn-0|

设函数f(x)定义如下表,数列{Xn}(满足X0=5,且对于任意的自然数n,均有Xn+1=f(Xn),求x2011

f(1)=4f2=1f3=3f4=5f5=2那么:x0=5x1=f5=2x2=f2=1x3=f1=4x4=f4=5所以:数列以4为周期循环往复,2011除以4余3,所以x2011=x3=4

设数列{Xn}有界,又LimYn=0,证明:LimXnYn=0.本人课没上,

因为{Xn}有界,不妨设limXn在x趋于无穷大时,limXn小于等于M,然后有LimXnYn小于等于M*LimYn=0,所以有LimXnYn=0

设数列{X}有界,又有limY=0,证明:limXY=0

因为数列{X}有界,所以设绝对值X