设数列[an]满足a1=1,a2=5 3(3分之5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:19:03
设数列[an]满足a1=1,a2=5 3(3分之5)
若数列{An}满足A1=1,A(n+1)=An/(2An + 1)

1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3

设数列满足a1=2,an+1-an=3•22n-1

(Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通

设数列{an}中,a1=2,a(n+1)=an+n+1,求an

a(n+1)=a(n)+n+1,a(n)=a(n-1)+(n-1)+1,...a(2)=a(1)+1+1,等号两边求和.有,a(n+1)+a(n)+...+a(2)=a(n)+...+a(2)+a(1

已知数列{an}满足a1=100,an+1-an=2n,则a

a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-

数列证明题:设数列{an}满足:A(n)=a1+a2+~+an,B(n)=a2+a3+~+a(n+1),C(n)=a3+

A(n),B(n),C(n)是公比为q的等比数列,B(n)=qA(n),B(n)=A(n)-a1+a(n+1),B(n)=qA(n)=A(n)-a1+a(n+1),A(n)=[a(n+1)-a1]/(

设各项均为正数的数列{An}满足A1=2,An=Aˇ〔3/2〕n+1*An+2

那么我把Aˇ〔3/2〕n+1理解成A[n+1]的3/2次方了递推式可以化成A[n]/A[n+1]^2=(A[n+1]/A[n+2]^2)^(-1/2)两边取对数得到log(A[n]/A[n+1]^2)

设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a

根据2Sn=an^2+n得到2a1=a1^2+1求得a1=1或a1=-1又因为an>0所以a1=1同理求得a2=2a3=3(2)猜想an=n证明:因为2Sn=an^2+n……①那么2Sn-1=an-1

数列an满足a1=1/2 a(n+1)=1/2-an (1)求数列an的通向公式 (2)设数列an的前n项为Sn 证明S

A(n+1)=1/(2-An)=>1/[A(n+1)-1]=1/[1/(2-An)-1]=>1/[A(n+1)-1]=1/(An-1)-1=>1/[An-1]为等差数列=>1/(An-1)=-1*(n

设数列{an}满足:a1=1,an+1=3an,n∈N+.

(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1

设数列an满足a1=2 an+1-an=3-2^2n-1

(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3

设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)

令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得

设数列AN满足A1=2,A(N+1)-AN=3X2^(2N-1)?

a(n+1)-an=3*2^(2n-1)an-a(n-1)=3*2^(2n-3)...a3-a2=3*2^3a2-a1=3*2^1相加an-a1=3[2^1+2^3+2^5+2^7+...+2^(2n

设 数列an满足a1=2,a(n+1)-an=3·2^(2n-1) (1)求数列an 的通项公式

由题意得:an-a(n-1)=3·2^(2n-3)a(n-1)-a(n-2)=3·2^(2n-5)..a2-a1=3·2^1叠加得:an-a1=3·[2^1+2^3+.+2^(2n-3)]注意:共n-

设数列{an}满足a1+3a2+3^2a3+.3^n-1×an=n/3,a∈N+.

(1)a1+3a2+…+3^(n-2)an-1=(n-1)/3a1+3a2+…+3^(n-1)an=(n-1)/3+3^(n-1)an=n/3an=(1/3)^n.(2)bn=n/an=n3^nSn=

设数列{An}满足A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,a属于正整数.

1、①A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,又A1+3A2+3^2*A3+...+3^(n-)*An-1=(n-1)/3,(比已知的式子最后少写一项,即有n-1项),两式相

设数列{an}满足an+1/an=n+2/n+1,且a1=2

1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c

已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an

a1=2>0假设当n=k(k∈N+)时,ak>0,则a(k+1)=3√ak>0k为任意正整数,因此对于任意正整数n,an恒>0,数列各项均为正.a(n+1)=3√anlog3[a(n+1)]=log3

数列的填空题设数列{an}满足a1=6,a2=4,a3=3,且数列{a(n+1)-an}是等差数列,则数列{an}的通项

设数列{an}满足a1=6,a2=4,a3=3,且数列{a(n+1)-an}是等差数列,则数列{an}的通项公式为?观察可知,an是n的二次函数.设:an=bn²+cn+da1=b+c+d=