设数列Xn有界,数列Yn的极限为0,证明数列XnYn的极限为0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:02:30
证明:因为数列{xn}有界,所以存在常数M,对任意n,都有|xn|N时,恒有|yn|
|xn|≤M-Myn≤xn.yn≤Myn-Mlim(n->∞)yn≤lim(n->∞)xn.yn≤Mlim(n->∞)yn0≤lim(n->∞)xn.yn≤0=>lim(n->∞)xn.yn=0
{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0
因为数列{Yn}的极限是0则对于任意的e,存在N(e),使得n>N时,|Yn|
有界函数与无穷小的乘积极限为0
证明1:∵数列Xn有界∴一定存在常数M>0,有|Xn|≤M(n=1,2,3,.)∵lim(n→∞)Yn=0∴根据极限定义知,对任意e>0,总存在自然数N,当n>N时,有|Yn|N1时,有|X(2k-1
存在正常数M,使得一切xn满足|xn|
发现当n是奇数趋向于无穷的时候趋向于X发现当n是偶数趋向于无穷的时候趋向于YX不等于Y所以不存在
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
很简单1、证:充分性因为lim|Xn|=0,所以任给t>0,存在正整数N,对一切n>N有-tN都有│yn│N时总有│xnyn│
应该不需要证你说的那个等式吧(虽然在一定条件满足的情况下可能存在这样的定理).只需要从极限的定义角度证明,大致的直观思路是,n够大时,Yn可以进入0的任意小的邻域.这样,Xn有界,Xn*Yn无非是Yn
不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.
如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮我是百度知道专家,你有问题也可以在这里向我提问:http://zhidao.baidu.com/prof/view/yq_whut
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
当n趋于无穷大时yn为无穷小,xn为有界函数,有界函数乘以无穷小结果还是无穷小.所以xn.yn=o明白了吗?
用极限的定义,Xn有界,则存在M使得Xn的绝对值
因为limyn=0所以对任意的ε1>0,存在N1,使n>N1时,有|yn|N时,有|xnyn|=|xn|*|yn|
因为{xn}有界,则存在M>0,有|xn|0,存在N>0,当n>N,有|yn-0|0,当n>N,有|xn*yn-0|