设数列xn有界,又lim yn=0 证明limxnyn=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:16:24
证明:因为数列{xn}有界,所以存在常数M,对任意n,都有|xn|N时,恒有|yn|
|xn|≤M-Myn≤xn.yn≤Myn-Mlim(n->∞)yn≤lim(n->∞)xn.yn≤Mlim(n->∞)yn0≤lim(n->∞)xn.yn≤0=>lim(n->∞)xn.yn=0
{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0
limX=aa的绝对值数列{Xn}有界,所以limYn=0,limYn=0则limXnYn=0
首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基
证明:设存在一个正数M>0,使得一切n,都能得到Xn≦M,limXnYn((n→∞)=MlimYn((n→∞)=M*0=0
证数列{xn}有界存在M.对一切n,有|xn|0,存在N>0,当n>N时|yn|
limyn=A,==>lim[1/yn)=1/AlimSn/n=1/A,所以对任意给定ε>0,存在N,使n>N时,-ε再问:下面是什么啊?再答:不好意思,还没想出,我再想想。再问:一定要帮我啊!我脑袋
很简单1、证:充分性因为lim|Xn|=0,所以任给t>0,存在正整数N,对一切n>N有-tN都有│yn│N时总有│xnyn│
数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!
如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮我是百度知道专家,你有问题也可以在这里向我提问:http://zhidao.baidu.com/prof/view/yq_whut
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
用极限的定义,Xn有界,则存在M使得Xn的绝对值
数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!
因为limyn=0所以对任意的ε1>0,存在N1,使n>N1时,有|yn|N时,有|xnyn|=|xn|*|yn|
因为数列{Xn}有界所以-M
(Xn)有界,所以存在正数M使得0≤|Xn|≤M,所以0≤|XnYn|≤M|Yn|右边的极限是0根据夹逼原则,lim|XnYn|=0所以limXnYn=0.也可以用定义证明.有疑问请追问,满意请选为满
因为{Xn}有界,不妨设limXn在x趋于无穷大时,limXn小于等于M,然后有LimXnYn小于等于M*LimYn=0,所以有LimXnYn=0