设数列nan有界,证明级数an2收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:13:08
设数列nan有界,证明级数an2收敛
设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

设正项级数∑Un收敛,数列{Vn}有界,证明级数∑UnVn绝对收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

高二数列题:设数列{an}满足an+1=an^2-nan+1,n为正整数,当a1>=3时,证明……

(1)当n=1时,a1>=3=1+2,an>=n+2成立;当n>1时,an=(an-1)^2-nan-1+1,令S=an-(n+2)=(an-1)^2-nan-1+1-(n+2)=(an-1)^2-(

高数证明题!若数列{nan}有界.证明级数(an的平方)收敛!

nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?

设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)

令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得

an>0,{nan}有界,证明级数an收敛

可以证明a_n一定收敛到0否则,存在e,对任意N,都存在n>N,使得a_n>e这时,n*a_n>n*e>N*e而N是任意的,所以{n*a_n}就不是有界的,矛盾!故a_n一定收敛到0

设数列{an}是首项为1的正数数列,且(n+1)a^2n+1-nan^2+an+1an=0

(n+1)a^2n+1-nan^2+an+1an=0因式分解,得[a(n+1)+an]*[(n+1)a(n+1)-nan]=0数列{an}是首项为1的正数数列,所以a(n+1)+an>0,则(n+1)

设数列an满足a1=1/2,2nan+1=(n+1)an,求数列an的通项公式

∵2nan+1=(n+1)an,∴a(n+1)/an=(n+1)/2n,∴a2/a1=2/2a3/a2=3/2×2a4/a3=4/2×3a5/a4=5/2×4……an/a(n-1)=n/2(n-1)两

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+

设数列{an}满足:an+1=an^2-nan+1,n=1,2,3,…当a1≥3时,证明对所有的n≥1,有(1)an≥n

用数学归纳法:当n=1时显然成立,假设当n≥k时成立即ak≥k+2,则当n=k+1时,ak+1=ak(ak-k)+1≥ak(k+2-k)+1≥(k+2)·2+1>k+3,成立.(2)利用上述部分放缩的

设数列{an}的前n项和为sn,且a1=1,sn=nan-2n(n-1)(n∈正整数)证明,证明1/a1a2+1/a2a

Sn=nan-2n(n-1)Sn=n(Sn-S(n-1))-2n(n-1)(n-1)Sn-nS(n-1)=2n(n-1)Sn/n-S(n-1)/(n-1)=2Sn/n-S1/1=2(n-1)Sn/n=

设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn

1、a1+2a2+3a3+.+nan=2^n(1)a1+2a2+3a3+.+(n-1)a(n-1)=2^(n-1)(2)(1)-(2)nan=2^n-2^(n-1),nan=2^(n-1),{an}的

问道数列题.设数列an满足a1+2a2+3a3+...+nan=2^n(n属于正自然数),则数列an的通项是?

an满足an满足a1+2a2+3a3+...+nan=2^n所以有a1+2a2+3a3+...+(n-1)a(n-1)=2^(n-1)上面两式作减法有nan=2^n-2^(n-1)=2^(n-1)an

设an>0,证明级数an/[(a1+1)(a2+1)...(an+1)]收敛?

其实只要裂项就可以了,然后利用单调有下界的正数列必有极限就可以证明了,具体的办法见图中所示:

设数列{An}满足An+1=An^2-nAn+1,n为正整数,当A1>=3时,证明对所有的n>=1,有

(1)用数学归纳法.A(n+1)=An^2-nAn+1=An(An-n)+1>=An*2+1>=(n+2)*2+1=2n+5>n+1+2(2)因为an>=n+2,所以an-n>=2A(n+1)=An(

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^

设数列{an}有界,又bn的极限等于0,证明an乘bn的极限等于0

用定义证明.{an}有界,则存在正数M,使得|an|≤M.所以|anbn|≤M|bn|.因为bn的极限是0,所以对于任意的正数ε,存在正整数N,当n>N时,|bn|<ε/M.所以,当n>N时,|anb