设数列nan有界,证明级数an2收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:13:08
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
用比较判别法证明.经济数学团队帮你解答.请及时评价.
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
(1)当n=1时,a1>=3=1+2,an>=n+2成立;当n>1时,an=(an-1)^2-nan-1+1,令S=an-(n+2)=(an-1)^2-nan-1+1-(n+2)=(an-1)^2-(
nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?
令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得
可以证明a_n一定收敛到0否则,存在e,对任意N,都存在n>N,使得a_n>e这时,n*a_n>n*e>N*e而N是任意的,所以{n*a_n}就不是有界的,矛盾!故a_n一定收敛到0
(n+1)a^2n+1-nan^2+an+1an=0因式分解,得[a(n+1)+an]*[(n+1)a(n+1)-nan]=0数列{an}是首项为1的正数数列,所以a(n+1)+an>0,则(n+1)
∵2nan+1=(n+1)an,∴a(n+1)/an=(n+1)/2n,∴a2/a1=2/2a3/a2=3/2×2a4/a3=4/2×3a5/a4=5/2×4……an/a(n-1)=n/2(n-1)两
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
用数学归纳法:当n=1时显然成立,假设当n≥k时成立即ak≥k+2,则当n=k+1时,ak+1=ak(ak-k)+1≥ak(k+2-k)+1≥(k+2)·2+1>k+3,成立.(2)利用上述部分放缩的
Sn=nan-2n(n-1)Sn=n(Sn-S(n-1))-2n(n-1)(n-1)Sn-nS(n-1)=2n(n-1)Sn/n-S(n-1)/(n-1)=2Sn/n-S1/1=2(n-1)Sn/n=
1、a1+2a2+3a3+.+nan=2^n(1)a1+2a2+3a3+.+(n-1)a(n-1)=2^(n-1)(2)(1)-(2)nan=2^n-2^(n-1),nan=2^(n-1),{an}的
an满足an满足a1+2a2+3a3+...+nan=2^n所以有a1+2a2+3a3+...+(n-1)a(n-1)=2^(n-1)上面两式作减法有nan=2^n-2^(n-1)=2^(n-1)an
其实只要裂项就可以了,然后利用单调有下界的正数列必有极限就可以证明了,具体的办法见图中所示:
(1)用数学归纳法.A(n+1)=An^2-nAn+1=An(An-n)+1>=An*2+1>=(n+2)*2+1=2n+5>n+1+2(2)因为an>=n+2,所以an-n>=2A(n+1)=An(
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^
用定义证明.{an}有界,则存在正数M,使得|an|≤M.所以|anbn|≤M|bn|.因为bn的极限是0,所以对于任意的正数ε,存在正整数N,当n>N时,|bn|<ε/M.所以,当n>N时,|anb