设数列an的前n项和为sn且对任意自然数n都有(sn-1)2=an外

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:53:51
设数列an的前n项和为sn且对任意自然数n都有(sn-1)2=an外
设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096,)求{an}的通项公式

an+Sn=4096=2^12an-1+sn-1=2^12an-an-1+(sn-sn-1)=02an=an-1an/(an-1)=1/2q=1/2a1=s1=2^11an=2^11(1/2)^(n-

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096,)求{an}的通项公式设数列{log(2)A(n

an+Sn=4096a1+s1=4096a1=2048=2^11Sn=4096-anS(n-1)=4096-a(n-1)两式相减得an=a(n-1)-anan=(1/2)a(n-1){an}是公比为1

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096 (2)设数列{log an}的前n项和为Tn,当

an+Sn=4096,a(n+1)+S(n+1)=4096,相减得2a(n+1)=an,{an}是等比数列an=2^(12-n),得logan=(12-n)log2是等差数列Tn=n[11+12-n]

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096

(1)由已知有:2a1=4096得a1=2048,又an+sn=4096,an+1+Sn+1=4096,两式相减得an+1=an/2,所以an是以1/2为公比的等比数列,故an=2048*(1/2)^

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096若数列{log2底an}的前n项和记为f(n),求

an+Sn=4096a(n-1)+S(n-1)=4096两式相减==>>an=a(n-1)/2(又a1+s1=4096=>a1=2048)==>>an=2^(12-n)==>>bn=(log2底an)

设数列(an )的前n 项和为S ,且对任意正整数n ,an +Sn =4096 求数列的通项公式

an+Sn=4096a(n+1)+S(n+1)=4096相减a(n+1)-an+a(n+1)=0a(n+1)/an=1/2所以是等比,q=1/2a1=S1所以2a1=4096a1=2048=2^11所

设各项均为正数的数列{an}的前n项和为sn已知a1=1且(Sn+1+λ)an=(Sn+1)an+1对一切n∈正整数成立

(1)若λ=1,则(S(n+1)+λ)an=(Sn+1)a(n+1)两边除以ana(n+1)得S(n+1)/a(n+1)+1/a(n+1)=Sn/an+1/an∴Sn/an+1/an,是常数列.Sn/

已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等

Sn=n-anS(n-1)=(n-1)-a(n-1)两式作差得:an=1+a(n-1)-an整理得:2(an-1)=a(n-1)-1即2bn=b(n-1)再问:已知数列{an}的前n项和为Sn,且对任

已知数列{an}的前n项和为Sn,且对任意n属于N+有an+Sn=n,设Cn=n(1-bn)求数列{Cn}的前n项和Tn

(1)an+Sn=na(n+1)+S(n+1)=n+1两式相减2a(n+1)-an=1,即2(a(n+1)-1)=an-1,2b(n+1)=bn而a1+a1=1,a1=1/2,b1=-1/2,{bn}

设正数列{an}的前n项和为Sn,且对任意的n属于N*,Sn是an^2和an的等差中项 求数列{an}的通项公式

Sn是an^2和an的等差中项所以Sn=(an²+an)/2①同理得Sn-1=(an-1²+an-1)/2②①-②得2an=an²-an-1²+an-an-1化

已知数列an的前n项的和为sn,且对任意n∈N有an+sn=n,设bn=an-1,求证数列bn是等比数列

an+sn=na(n+1)+s(n+1)=n+1a(n+1)-an+a(n+1)=1a(n+1)-1=0.5(an-1)即{an-1}是以a1-1=-0.5为首项0.5为公比的等比数列

设数列{an}的前n项和为Sn,对任意n∈N*满足2Sn=an(an+1),且an≠0 (1)求数列an的通项公式

2Sn=an(an+1),2Sn=a(n-1)【a(n-1)+1】,an=Sn-S(n-1)得2an=an^2(平方)-a(n-1)^2+an-a(n-1).移项,平方的用平方差,因为an≠0,所以两

高中数学,高手请进!设正数数列{an}的前n项和为Sn,且Sn=用数学归纳法

【解法一】Sn=1/2(an+1/an)S(n-1)=Sn-an=1/2(1/an-an)Sn+S(n-1)=1/anSn-S(n-1)=an上面两式相乘得:Sn^2-S(n-1)^2=1S1=a1=

设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式

因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(

设数列{an}的前n项和为Sn,且对任意的自然数n都有(Sn-1)^2=anSn

n=1时,(s1-1)^2=s1*s1即-2s1+1=0解得s1=1/2n=2时,(s2-1)^2=(s2-s1)*s2解得:s2=2/3n=3时,(s3-1)^2=(s3-s2)*s3解得:s3=3

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096.

(1)∵an+Sn=4096,∴a1+S1=4096,a1=2048.当n≥2时,an=Sn-Sn-1=(4096-an)-(4096-an-1)=an-1-an∴anan−1=12an=2048(1

设数列An的前n项和为Sn,且a1=1,An+1=1/3Sn,

An+1=1/3Sn3An+1=Sn(1)3An=Sn-1(2)(1)-(2)得3An+1=4An(n大于等于2),所以An是以A2为首项q=4/3的等比数列A2=1/3A1,所以A2等于1/3An=

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: