设数列an的前n项和为Sn,且Sn=2ⁿ-1,数列bn满足b1=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:30:24
an+Sn=4096=2^12an-1+sn-1=2^12an-an-1+(sn-sn-1)=02an=an-1an/(an-1)=1/2q=1/2a1=s1=2^11an=2^11(1/2)^(n-
(1)由已知有:2a1=4096得a1=2048,又an+sn=4096,an+1+Sn+1=4096,两式相减得an+1=an/2,所以an是以1/2为公比的等比数列,故an=2048*(1/2)^
(本小题满分13分)(I)由题意,当n=1时,得2a1=a1+3,解得a1=3.当n=2时,得2a2=(a1+a2)+5,解得a2=8.当n=3时,得2a3=(a1+a2+a3)+7,解得a3=18.
S(n+1)+S(n)=2a(n)+1S(n)+S(n-1)=2a(n-1)+1两式相减s(n+1)-s(n-1)=a(n+1)+a(n)=2a(n)-2a(n-1)整理后有a(n+1)-a(n)+2
设数列{bn}的前n项和为Sn,且Sn=1-bn/2;数列{an}为等差数列,且a6=17,a8=23,1,求bn的通项公式2,若cn=anbn(n=1,2,3,...),Tn为数列cn的前n项和,求
n=an+1S(n+1)=2Sn+n+5.1Sn=2S(n-1)+n-1+5=2S(n-1)+n+4.2(1)-(2)得S(n+1)-Sn=2[Sn-S(n-1)]+1a(n+1)=2an+1a(n+
1=2-2b1,b1=2/3.bn-b(n-1)=-2(sn-s(n-1))=-2bn,bn/b(n-1)=1/3.bn=2/3•(1/3)^(n-1).a1=2,d=3.an=3n-1.
先求an令n=1,a1=s1=1;当n>=2时,an=Sn-Sn-1=(n-2)^2-(n-3)^2(注a^b表示a的b次方)=2n-5(注意,数列an不是一个等差数列,首项不符合上面的通项公式,只是
1=2-2*b13b1=2b1=2/3bn-bn-1=(2-2sn)-(2-2sn-1)=-2(sn-sn-1)=-2bn3bn=bn-1bn=1/3*bn-1{bn}是等比数列{bn}={2/3*(
(1)当n=1时,a1=S1=13(a1−1),得a1=−12;当n=2时,S2=a1+a2=13(a2−1),得a2=14,同理可得a3=−18.(2)当n≥2时,an=Sn−Sn−1=13(an−
1.s2/s1=c+1s2=c+1a2=cs3/s2=(2+c)/2s3=(2+c)(c+1)/2a3=c(c+1)/22a2=a1+a32c=1+c(c+1)/2c^2-3c+2=0c=1或22.c
(一)(1)由a1=1,S(n+1)=4an+2.可得:a1=1,a2=5,a3=16.a4=44.∴由bn=(an)/2^n得:b1=2/4,b2=5/4,b3=8/4,b4=11/4.显然,b1,
【解法一】Sn=1/2(an+1/an)S(n-1)=Sn-an=1/2(1/an-an)Sn+S(n-1)=1/anSn-S(n-1)=an上面两式相乘得:Sn^2-S(n-1)^2=1S1=a1=
Sn=4An-3S(n-1)=4A(n-1)-3Sn-S(n-1)=An=4An-3-[4A(n-1)-3]=4an-3-4A(n-1)+3=4An-4A(n-1)3An=4A(n-1)An/A(n-
an=Sn-S(n-1)=2^n-1-[2^(n-1)-1]=2^(n-1)
因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(
S5=5a3所以a3=-1S10-S5=a6+...+a10=a1+...+a5+5乘以5dd=1所以a1=负3an=n-4Sn=0.5n^2-3.5nSn/n=0.5n-3.5Tn=n(n-13)/
(1)∵an+Sn=4096,∴a1+S1=4096,a1=2048.当n≥2时,an=Sn-Sn-1=(4096-an)-(4096-an-1)=an-1-an∴anan−1=12an=2048(1
An+1=1/3Sn3An+1=Sn(1)3An=Sn-1(2)(1)-(2)得3An+1=4An(n大于等于2),所以An是以A2为首项q=4/3的等比数列A2=1/3A1,所以A2等于1/3An=
解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: