设数列an满足a1= 2 a =2an-n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:45:23
1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3
1a2=4a3=13我想这个你应该会求吧.2观察a-a=3^(n-1)可采用累加法a-a=3^(n-1)a-a=3^(n-2).a-a=3把上面的式子全部加起来,可得a-a=(3^n-3)/2解得a=
a(n+1)=a(n)+n+1,a(n)=a(n-1)+(n-1)+1,...a(2)=a(1)+1+1,等号两边求和.有,a(n+1)+a(n)+...+a(2)=a(n)+...+a(2)+a(1
a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-
记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={
那么我把Aˇ〔3/2〕n+1理解成A[n+1]的3/2次方了递推式可以化成A[n]/A[n+1]^2=(A[n+1]/A[n+2]^2)^(-1/2)两边取对数得到log(A[n]/A[n+1]^2)
2-a(n+1)=12/(an+6)a(n+1)=2an/(an+6)1/a(n+1)=(an+6)/[2an]1/a(n+1)+1/4=3(1/an+1/4)[1/a(n+1)+1/4]/(1/an
根据2Sn=an^2+n得到2a1=a1^2+1求得a1=1或a1=-1又因为an>0所以a1=1同理求得a2=2a3=3(2)猜想an=n证明:因为2Sn=an^2+n……①那么2Sn-1=an-1
A(n+1)=1/(2-An)=>1/[A(n+1)-1]=1/[1/(2-An)-1]=>1/[A(n+1)-1]=1/(An-1)-1=>1/[An-1]为等差数列=>1/(An-1)=-1*(n
(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3
a(n+1)-an=3*2^(2n-1)an-a(n-1)=3*2^(2n-3)...a3-a2=3*2^3a2-a1=3*2^1相加an-a1=3[2^1+2^3+2^5+2^7+...+2^(2n
由题意得:an-a(n-1)=3·2^(2n-3)a(n-1)-a(n-2)=3·2^(2n-5)..a2-a1=3·2^1叠加得:an-a1=3·[2^1+2^3+.+2^(2n-3)]注意:共n-
直接上图片,回答不易,
(1)a1+3a2+…+3^(n-2)an-1=(n-1)/3a1+3a2+…+3^(n-1)an=(n-1)/3+3^(n-1)an=n/3an=(1/3)^n.(2)bn=n/an=n3^nSn=
1、①A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,又A1+3A2+3^2*A3+...+3^(n-)*An-1=(n-1)/3,(比已知的式子最后少写一项,即有n-1项),两式相
方法一:A(n+1)-1=3An-3=3(An-1),且A1-1=2,所以数列{An-1}为公比为3,首项为2的等比数列方法二:设A(n+1)+k=3(an+k),即A(n+1)=3An+2k,则2k
(1)An为等差数列故An=1+2(n-1)=2n-1则Bn=1/(2n-1)(2n+1)=〔1/(2n-1)-1/(2n+1)〕/2Sn=〔1-1/3+1/3-1/5+1/5-.+1/(2n-1)-
1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c
a1=2>0假设当n=k(k∈N+)时,ak>0,则a(k+1)=3√ak>0k为任意正整数,因此对于任意正整数n,an恒>0,数列各项均为正.a(n+1)=3√anlog3[a(n+1)]=log3