设数列an满足a =a2=1,a3=2,且对任意正整数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 20:36:38
答案啊这样的,我用照片给你发过去
设A1=2A2=4数列Bn满足:B(n)=A(n+1)-A(n)①B(n+1)=2B(n)+2②B(n+1)=2B(n)+2===>[B(n+1)+2]=2[B(n)+2]可见B(n)+2是公比q=2
(1){a(n+1)-an}是等差数列设Cn=a(n+1)-an则C1=a2-a1=4-6=-2C2=a3-a2=3-4=-1d=C2-C1=1Cn=C1+(n-1)d=n-3Sn=(C1+Cn)*n
1.a2-a1=d=-3a3-a2=-3a4-a3=-3...an-a(n-1)=-3叠加an-a1=-3(n-1)所以an=-3n+9b2/b1=3/6=1/2b3/b2=1/2...bn/b(n-
A(n),B(n),C(n)是公比为q的等比数列,B(n)=qA(n),B(n)=A(n)-a1+a(n+1),B(n)=qA(n)=A(n)-a1+a(n+1),A(n)=[a(n+1)-a1]/(
记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={
a1×a2×a3×a4=a1+a2+a3+a41×1×2×a4=1+1+2+a4a4=4a2×a3×a4×a5=a2+a3+a4+a51×2×4×a5=1+2+4+a57a5=7a5=1=a1a3×a
根据2Sn=an^2+n得到2a1=a1^2+1求得a1=1或a1=-1又因为an>0所以a1=1同理求得a2=2a3=3(2)猜想an=n证明:因为2Sn=an^2+n……①那么2Sn-1=an-1
由a1+3a2+3^2a3+……+3^(n-1)an=n/3和a1+3a2+3^2a3+……+3^(n-1)an+3^na_(n+1)=(n+1)/3得3^n*a_(n+1)=1/3所以a_(n+1)
a1+2a2+.+(n-1)an-1=2^n-1(1)n大于等于2a1+a2+.+(n-1)an-1+nan=2^n(2)(2)-(1)得an=2^n-1/n再检验下n=1时,你题目的等号后表达不清楚
(1){an}是等差数列,a1=1,a2=a(a>0),an=1+(n-1)(a-1)a3=2a-1,a4=3a-2b3=a3*a4=(2a-1)(3a-2)=12a=2,或-5/6(舍去)所以a=2
已知数列An满足:A1=1,A2=a(a>0),数列Bn=AnAn+1(1)若AN是等差数列,且B3=12,求a的值及AN通项共识你看看那B3=12应该=A3*A3+1(这就是利用Bn=AnAn+1)
直接上图片,回答不易,
(1)a1+3a2+…+3^(n-2)an-1=(n-1)/3a1+3a2+…+3^(n-1)an=(n-1)/3+3^(n-1)an=n/3an=(1/3)^n.(2)bn=n/an=n3^nSn=
1、①A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,又A1+3A2+3^2*A3+...+3^(n-)*An-1=(n-1)/3,(比已知的式子最后少写一项,即有n-1项),两式相
假设法好久没用,书写有些不规范,麻烦自己整理.1.设an=2n二次方+n,(我是先求出几个数,找规律,数列递推数列是等差数列,然后用累加法求的通项公式,一般这种题数列的差不是等差就是等比,只是这种方法
设数列{an}满足a1=6,a2=4,a3=3,且数列{a(n+1)-an}是等差数列,则数列{an}的通项公式为?观察可知,an是n的二次函数.设:an=bn²+cn+da1=b+c+d=
(1)a(n+2)=3a(n+1)-2ana(n+1)=a(n-1+2)=3a(n-1+1)-2a(n-1)=3an-2a(n-1)a(n+1)-an=2*(an-a(n-1))即后一项是前一项的2倍