设数列an是首项为1的正项数列,且当n 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 20:26:32
设数列an是首项为1的正项数列,且当n 2
在各项为正的数列{an}中,数列的前n项和Sn满足Sn=2分之一(an+an分之一),(1)求a1,a2,a3.

S[1]=a[1]=1/2(a[1]+1/a[1]),于是:a[1]=1=√1-√0S[2]=a[2]+1=1/2(a[2]+1/a[2]),于是:a[2]=√2-1,S[2]=√2S[3]=a[3]

已知数列{an}是首项为1公差为正的等差数列,数列{bn}是首项为1的等比数列,设Cn=anbn(n∈N*),且数列{c

(1)设数列{an}的公差为d,数列{bn}的公比为q,则由题意知a1b1=1(a1+d)(b1q) =4(a1+2d)(b1q2) =12 ,因为数列{an}各项为正数

设数列{an}是各项为正等比数列 求证数列{lgan}为等差数列,并写出首项和公差

设an=a1*q^n-1则lgan-1+lgan+1=lga1*q^n-2+lga1*qn=lga1^2*q2n-22lgan=2lga1*qn-1=lg(a1*qn-1)^2=lga1^2*q2n-

设{An}是首项为1的正项数列,且(n+1)*An+1^2-nAn^2+(An+1)*An=0(n=1,2,3,4……)

0=(n+1)[A(n+1)]^2-n[A(n)]^2+A(n+1)A(n)=n{[A(n+1)]^2-[A(n)]^2}+A(n+1)[A(n+1)+A(n)]=[A(n+1)+A(n)]{A(n+

设{an}是首项为1的正项数列,且(n+1)[a(n+1)]^2-n(an)^2+a(n+1)an=0(n=1,2,3…

(n+1)[a(n+1)]^2-n(an)^2+a(n+1)an=0=>〔(n+1)a(n+1)-n*an〕*[a(n+1)+an]=0(分解因式)因为{an}是首项为1的正项数列所以a(n+1)+a

设{An}的首项为1的正项数列

((n+1)An+1-nAn)(An+1+An)=0=>(n+1)An=nAn=A1=1所以An=1/n

设数列an是首项为1的正项数列,且(n+1)a²n+1-na²n+an+1an=0(n=1,2,3.

n[a(n+1)]²+[a(n+1)]²-n(an)²+a(n+1)an=0n{[a(n+1)]²-(an)²}+[a(n+1)]²+a(n

设数列{an}是首项为1的正项数列,且(n+1)a²n+1-na²n+an+1an=0(n=1,2,

(n+1)*a(n+1)^2-n*an^2+an*a(n+1)=0n*(a(n+1)^2-an^2)+a(n+1)^2+an*a(n+1)=0(a(n+1)+an)((n+1)*a(n+1)-n*an

设数列an的前n项和为sn,且a1为1 ,Sn+1=4an+2(n∈N正)

(一)(1)由a1=1,S(n+1)=4an+2.可得:a1=1,a2=5,a3=16.a4=44.∴由bn=(an)/2^n得:b1=2/4,b2=5/4,b3=8/4,b4=11/4.显然,b1,

设数列{an}是首项为1000,公比为十分之一的等比数列,数列{bn}满足

an=1000*(1/10)^(n-1)=10^3*10^(1-n)=10^(4-n)lgan=4-nbk=lga1+lga2+...+lgak=3+2+...+4-k=(3+4-k)*k/2=(7-

设数列{an}的前n项积为Tn,Tn=1-an,

(1)由题意得Tn=1-an,①Tn+1=1-an+1,②∴由②÷①得an+1=1−an+11−an,∴an+1=12−an,∴1Tn+1-1Tn=11−an+1-11−an=11−12−an-11−

设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式

因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(

设数列{an}是首项为1的等比数列,Sn是它的前n项和,若数列{Sn}为等差数列,则它的公差为多少

设公比为q,因为a1=1,即:a(n)=q^(n-1)则:S(n)=(1-q^n)/(1-q)若{Sn}为等差数列,设公差为d则:S(n)=S(n-1)+d即:d=S(n)-S(n-1)=(1-q^n

数列{an}是首项为0的等差数列,数列{bn}是首项为1的等比数列,设cn=an+bn,数列{cn}的前三项依次为1,1

(1)设数列{an}的公差为d,数列{bn}的公比为q,由题意得d+q=12d+q2=2,解得d=1q=0(舍) 或d=−1q=2,则an=1-n,bn=2n-1.(2)由(1)知,cn=a

数列an的前n项和为Sn,Sn+an=-1/2n2-3/2n+1(n属于正自然数).设bn=an+n,证明数列bn是等比

Sn+an=-(1/2)n^2-(3/2)n+1n=1a1=-1/22Sn-S(n-1)=-(1/2)n^2-(3/2)n+12(Sn+(1/2)n^2+(1/2)n-1)=S(n-1)+(1/2)(

设数列{an}是首项为3,公差为d的等差数列,又数列{bn}是由bn=an+an+1所决定的数列,那么数列{bn}前n项

an=3+(n-1)da(n+1)=3+nd所以bn=6+(2n-1)d=(6-d)+2dn所以bn是等差数列b1=6-d+2d=6+d所以Sn=(b1+bn)n/2=(12+2dn)n/2=dn&s