设总数为指数分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:51:06
解 实际上本题就是不用计算也能得出所求的概率为1/2.因为X和Y是相互独立的,且服从相同的分布,联合密度是边缘密度之积,由对称性可得X<Y的概率一定是1/2.当然X>Y的概率也是
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
你确定x-0.5没有绝对值吗再问:有啊,,,啊啊啊再答:根据切比雪夫不等式P{|X-EX|>=ε}2}根据题目ε=2所以P{x-0.5>2}≤1/4/2^2=1/16
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
参数为1,就是λ为1
答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
X的分布函数:F_X(x)={1-e^-λx,x>0{0,x
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0
X落入区间(1,2)内的概率P=积分(1-->2)λe^(-λx)dx=e^(-λ)-e^(-2λ)概率达到最大-->dP/dλ=0-->λ=ln2
P(X>1)=e^(-λ)=e^(-2),则λ=2
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
选B.我看的书,方差是参数的平方.
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
0.21/λ=1/5=0.2根据0—1分布,数学期望p方差p(1-p);二项分布(贝努里概型),数学期望np方差np(1-p);泊松分布,数学期望λ方差λ;均匀分布,数学期望(a+b)/2方差[(b-