设总体服从标准为50的正太分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 21:09:38
设总体服从标准为50的正太分布
以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,设随机变量ξ服从标准正态分布N(0,1),已知Φ(-1.96)

解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知

设随机变量X,Y独立都服从标准正态分布N(0,1),则X方/Y方服从的分布为

X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

设X1.X2.Xn是来自正态总体N(3,4)的样本,则1/4倍的Xi-3的平方求和服从的分布为?

由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)

设随机变量X1,X2,X3,X4,都服从正太分布n(1,1)且k[Σ(xi)-4]服从自由度为n

中括号后应该有个平方吧?k=1/4,n=1.中括号里是正态分布N(0,4),所以如果表达式是卡方分布的话,那自由度必然为1,而且修正系数k必为1/4再问:答案是对的,不过那个题中的确没有平方,可能是盗

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

设总体X服从参数为λ的泊松分布,X1.Xn是X的简单随机样本.求证:1/2(x的平均

求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有

X服从自由度为3的卡方分布 ,从总体中抽取n个样本,为什么 X1+X2+X3服从自由度为9的卡方分布

是这样子的,X服从于自由度为3的卡方分布,则有X=x1^2+x2^2+x3^2从X里抽出三个样本,则X1,X2,X3都有上面X=·····的表达式.根据卡分分布的可加性,3*3=9.则有,X1+X2+

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

设X1,X2……Xn为来自总体(10)的简单随机样本,则统计量服从的分布为(

样本均值的期望等于总体期望,此题中为np样本方差的期望等于总体方差,此题为np(1-p)所以t的期望等于np-np(1-p)np(1-p)

设随机变量XY相互独立,且均服从正太分布N(0,1)则概率P(XY>0)为多少

X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.5P(XY>0)=P(X>0,Y>0)+P(X0)+P(X再问:X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.

设X1,X2,...Xn是取自正态总体X~N(μ,σ^2)的一个样本,则1/(σ^2)∑(X-μ)^2 服从的分布是()

服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~

设总体X服从自由度为m的伽方分布,(X1,X2...Xn)是其中一个样本,求样本均值的密度函数

1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&